LP II Artificial Intelligence
Practical No 4

Problem Statement : Implement a solution for a Constraint Satisfaction
Problem using Branch and Bound and Backtracking for n-queens
problem or a graph coloring problem.

Solution:

We need to place N queens on an NxN chessboard such that no two queens
attack each other. Queens can attack in:

e Same row (‘5\/0
e Same column \9
e Same diagonal \\{2}"
<&
>

(Sé?: 4

4 x 4 Chess Board

So, we need to make sure no two queens share any of these.
Program Implementation:

We are using 4 methods to implement this program.
Method Overview

1. SolveNQueen: The main method that initiates the solution process.

2. PrintBoard: A method that prints the solution board with queens placed.
3. Solve: A recursive method that uses backtracking to place queens on the board.

4. IsSafe: A method that checks if a queen can be placed at a given position
without being attacked.

How They Work Together
1. SolveNQueen calls Solve to start the backtracking process.
2. Solve uses IsSafe to check if a queen can be placed at a given position.

3. If a safe position is found, Solve places the queen angée\curswely calls itself for
the next row. \
7\

AV
4. If a solution is found, Solve calls PrintBoaJ,@}o display the solution.
P
O

public static void SQiééNQueens(int n) [{|
int[][] board =éw int([n][n]; // Initialize an n x n board
solve (0, boar&$>n) // Start from row 0O

} R\
\
2. Solve Method:

// Recursive function to place queens

1. SolveNQueen:

private static void solve (int row, int[][] board, int n) I
if (row == n) {
solutionCount++; // Increment solution number
System.out.println("Solution " + solutionCount + ":");
printBoard(board, n); // All queens placed, print the solution
return;

}

// Try placing gqueen in each column of current row

for (int col = 0; col < n; col++) {
if (isSafe(board, row, col, n)) {
board[row] [col] = 1; // Place queen
solve(row + 1, board, n); // Recur to next row

board[row] [col] = 0; // Backtrack

Solve Method Logic:

Q

Step 1: Start at row 0 Q}ﬂ\
N\

Try to place a queen in each column of 1@

O

o Is (0, 0)safe? Yes — place Cl%@}

R

e Then go to next row (r Ql)

N\

Step 2: Row 1 «f‘
Try each column of row 1:

e (1,0)? Check — blocked (same column as queen at 0,0) — skip
e (1,1)? Check — diagonal attack — skip

e (1,2)? Safe? Yes — place queen

Then go to row 2.

Step 3: Row 2

Try to place a queen in row 2...

e All columns may be unsafe

Step 4: Backtrack
Go back to row 1:

e Remove the queen from (1, 2) — this is backtracking
e Try the next column — (1, 3)? Safe? Yes — place queen

e Continue to row 2

Step 5: Keep Going Until a Solution is Found 0(0

e Keep going like this until you reach row =~=\@(‘you placed all queens safely).
@
e Then print the board. 6\(&

e After that, you continue back@cking to explore other possible
arrangements. Q%
xO

@ .
“ng@

3. isSafe Method:

// Function to check if it's safe to place a queen at (row, col)

private static boolean isSafe(int[][] board, int row, int col, int n) {
// Check column
for (int 1 = 0; i < row; 1i++)

if (board[i] [col] == 1)
return false;

// Check upper-left diagonal
for (int i = row - 1, j = col = 1; 1 > 0 && j >= 0; i--, j--)
if (board[i][]] == 1)
return false;

// Check upper-right diagonal
for (int i = row - 1, jJ = col + 1; 1 >= 0 && j < n; i--, j++)
if (board[i][j] == 1)
return false;

return true; // No conflict, it's safe

4. PrintBoard Method: 0@

// Function to print the board \\gb
private static wvoid printBoard (i y [1] board, int n) {

\g?;

for (int 1 = 0; i < n; %ﬁ}
for (int J = 0; J++) |

System.out. pxggg(board[l 1] == 1 2 "Q ™ . ", ™)y;

}
System.out. Q§ tln(),

} Q§
System.ou2§§iintln();
~N

5. Main Method:

// Main function

public static void main(String[] args) {
int n = 8; // You can change N to 8, 5, etc.
solveNQueens (n) ;

}
Final Output :

Solution 1:

.0 . .

.. .0

Q . . .
. Q.

Solution 2:

... Q.

Q . .

Fal
o\\

Download Complgté Notes from

WWW. topstuqﬁatenal com
\\\

xO

	Step 1: Start at row 0
	Step 2: Row 1
	Step 3: Row 2
	 Step 4: Backtrack
	Step 5: Keep Going Until a Solution is Found

