LP II Artificial Intelligence
Practical No 4

Problem Statement : Implement a solution for a Constraint Satisfaction
Problem using Branch and Bound n-queens problem or a graph coloring
problem.

Solution:
What is Branch and Bound:

Branch and Bound is an optimization technique used to g\fﬁciently solve problems
like the N-Queen problem. L

In the context of the N-Queen problem, it helps;@ﬁce the number of unnecessary
recursive calls by eliminating infeasible “sgf)‘}utions early (bounding), while
exploring the possible placements of queer;i\’ﬂiranching).

N
3

N Queen Problem: O
N

. Q7
The problem is to place N q,@i\a’ns on an NXN chessboard such that no two
queens attack each other x(i}’e‘., no two queens share the same row, column, or

diagonal). D

3

So, the branch and bound technique avoid placing a queen in positions that
are already known to be unsafe due to previously placed queens.

1. Branching:

Place a queen in a row and then move to the next row (recursively).



2. Bounding:

Before placing a queen, check:
® I[s this column free?

e [s this main diagonal(upper left to bottom right) free?
e [s this anti-diagonal(upper right to bottom left) free?
If all are free — place queen and mark them as used.
Otherwise — prune this branch (don’t continue down this path).

Finding Main Diagonal and Anti-Diagonal: .\f\{\
O

1. Main Diagonal: ; ’?>

1. Main diagonal cells all have the same ro@" - col value
INY
. &
2. WeaddN - 1 toavoid negatlvg{ng‘hces (since row - col canbe

£
\ "4

negative) A\
o

3. This maps all possible diagggals to a valid index in the array

™y ¢
PR

N
‘\\\‘
Example for N = 4: N
Cell row col row - col dl=row-col +3
0,0) 0 0 0 3
0,1) 0 1 1 2
(1,0) 1 0 1 4

(3.0 3 0 3 6

2. Anti-diagonal :
Anti-diagonal cells all have the same row + col value



row + col is already non-negative

Example for N = 4:

Cell

0.3)

(1.2)

2.1

(3.0

row

d1 represents main diagonal and d2 represents agtidiagonal value
o
o)

So finally,

2I‘|

3

2

o | B w

4

N3

\
~
N
R\
3::\
al

6

5‘4

Sl WM

ol B|w]|n

(o) BN B QN N ROV

Program Implementation:

1. Declare class and initialize data structures:



public class NQueenBranchBound {

public static void main(String[] args) {
int N = 4; // Change N to solve for different board sizes

// Declare and initialize data structures

int[][] board = new int[N][N];

boolean[] cols = new boolean[N];

boolean[] diagl = new boolean[2 * N - 1]; // for row - col + N - 1
boolean[] diag2

new boolean[2 * N - 1]; // for row + col

// Solve the N-Queen problem starting from row @

solve(@, N, board, cols, diagl, diag2)§
} | Q}ib
N
@
(4
&
2. Solve Method: 5}0

&
&
R



// Method to solve the N-Queen problem using Branch and Bound
public static void solve(int row, int N, int[][] board, boolean[] cols, boolean[] diagl, boolean[] diag2) {
if (row == N) {
printSolution(N, board);
return;

for (int col = @; col < N; col++) {
int d1 = row - col + N - 1; // main diagonal
int d2

row + col; // anti-diagonal

if (lcols[col] && !diagl[dl] && !diag2[d2]) {
board[row][col] = 1;
cols[col] = diagl[dl] = diag2[d2] = true;

solve(row + 1, N, board, cols, diagl, diag2); O
board[row][col] = ; ﬂ\
cols[col] = diagl[dl] = diag2[d2] = false;é\?;
| &
) \}{;35
} Q{;}
xO

3. Print Solutioniﬁg‘&s"
N\



// Method to print the board with queens placed
public static void printSolution(int N, int[][] board) {
for (int 1 = @; 1 < N; i++) {
for (int j = @; j < N; j++) {
if (board[i][j] == 1)
System.out.print("Q ");
else
System.out.print(". ");

}
System.out.println();

}
System.out.println();

Download Complete Notes from
www.topstudymaterial.com



	1.​Branching: 
	 
	 
	 
	 
	2.​Bounding: 
	Example for N = 4: 


