
Inheritance

● In Java, Inheritance is an important pillar of OOP(Object-Oriented Programming).

● It is the mechanism in Java by which one class is allowed to inherit the

features(fields and methods) of another class.

● In Java, Inheritance means creating new classes based on existing ones.

● A class that inherits from another class can reuse the methods and fields of that

class. In addition, you can add new fields and methods to your current class as

well.

Important Terminologies Used in Java Inheritance

Class: Class is a set of objects which shares common characteristics/ behavior and

common properties/ attributes. Class is just a template or blueprint or prototype from

which objects are created.

Super Class/Parent Class: The class whose features are inherited is known as a

superclass(or a base class or a parent class).

Sub Class/Child Class: The class that inherits the other class is known as a subclass(or a

derived class, extended class, or child class). The subclass can add its own fields and

methods in addition to the superclass fields and methods.

Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to

create a new class and there is already a class that includes some of the code that we

want, we can derive our new class from the existing class. By doing this, we are reusing

the fields and methods of the existing class.

How to Use Inheritance in Java?

The extends keyword is used for inheritance in Java. Using the extends keyword

indicates you are derived from an existing class. In other words, “extends” refers to

increased functionality.

Syntax :

class DerivedClass extends BaseClass

 {

 //methods and fields

 }

// Parent class
class Animal {
 // Method in the parent class
 public void sound() {
 System.out.println("Animals make different sounds.");
 }
}

// Child class that extends Animal (Single Inheritance)
class Dog extends Animal {
 // Method in the child class
 public void bark() {
 System.out.println("The dog barks.");
 }
}

public class Main {
 public static void main(String[] args) {
 // Creating an object of the Dog class
 Dog dog = new Dog();

 // Calling methods from both parent and child class
 dog.sound(); // Method inherited from Animal class
 dog.bark(); // Method from Dog class

 }
}

Output:
Animals make different sounds.
The dog barks.

Types of Inheritance in Java
 In object-oriented programming (OOP), inheritance allows a class
(called a child or subclass) to inherit properties and behaviors (methods) from
another class (called a parent or superclass).

There are several types of inheritance, depending on how classes are related.
Here's a breakdown:

1. Single Inheritance

Single inheritance is when one child class inherits from one parent class. It’s the
most basic and most common type of inheritance.

Need of single inheritance:

To avoid code duplication and reuse existing features in a new class.

 When to use?

Use this when you have a clear one-to-one relationship like:

● A Car is-a Vehicle

● A Student is-a Person

It's suitable when your design is simple and focused.

Code:

class Vehicle {

 void displayDetails() {

 System.out.println("I am a Vehicle.");

 }

}

class Car extends Vehicle {

 void carType() {

 System.out.println("I am a Car.");

 }

}

public class Main {

 public static void main(String[] args) {

 Car obj = new Car();

 obj.displayDetails();

 obj.carType();

 }

}

Output:

 I am a Vehicle.

I am a Car

 2. Multilevel Inheritance

In this inheritance, a class inherits from a child class, which itself inherited from
another class. It's like a chain or ladder.

Why we need it?

To create progressive or layered classes, where each level adds more functionality
on top of the previous one.

This helps in building a step-by-step specialization.

When to use?

Use this when you want to build specialized versions of a class step-by-step.

Example:

● Vehicle → Car → ElectricCar

Every new level adds a new feature.

Code:

class Vehicle {

 void displayDetails() {

 System.out.println("I am a Vehicle.");

 }

}

class Car extends Vehicle {

 void carType() {

 System.out.println("I am a Car.");

 }

}

class ElectricCar extends Car {

 void batteryStatus() {

 System.out.println("Battery is fully charged.");

 }

}

public class Main {

 public static void main(String[] args) {

 ElectricCar obj = new ElectricCar();

 obj.displayDetails();

 obj.carType();

 obj.batteryStatus();

 }

}

Output:

I am a Vehicle.

I am a Car.

Battery is fully charged.

 3. Hierarchical Inheritance

Multiple child classes inherit from the same parent class. So the parent’s properties
are shared across multiple child classes.

Why we need it?

To create varieties of objects that share common features from a single parent.

This helps in organizing code logically and avoiding repetition.

When to use?

Use it when you have multiple related classes that have some common properties,
like:

● Car, Bike, Truck are all types of Vehicle.

Each has some unique behavior, but they also share some common features like
speed, color, etc.

Code:

class Vehicle {

 void displayDetails() {

 System.out.println("I am a Vehicle.");

 }

}

class Car extends Vehicle {

 void carType() {

 System.out.println("I am a Car.");

 }

}

class Bike extends Vehicle {

 void bikeType() {

 System.out.println("I am a Bike.");

 }

}

class Truck extends Vehicle {

 void truckType() {

 System.out.println("I am a Truck.");

 }

}

public class Main {

 public static void main(String[] args) {

 Car car = new Car();

 Bike bike = new Bike();

 Truck truck = new Truck();

 car.displayDetails();

 car.carType();

 bike.displayDetails();

 bike.bikeType();

 truck.displayDetails();

 truck.truckType();

 }

}

Output:

I am a Vehicle.

I am a Car.

I am a Vehicle.

I am a Bike.

I am a Vehicle.

I am a Truck.

4. Multiple Inheritance (via interfaces in Java)

When a class inherits features from more than one parent, it’s called multiple
inheritance. Java supports it only via interfaces.

Why we need it?

To build a class that needs to inherit behaviors from multiple sources. For
example:

● A Car needs both Engine and Wheels.

This lets us modularize functionality into separate interfaces and combine them.

When to use?

Use it when:

● You want a class to have multiple capabilities

● You're working with independent features

Example:

● Car is a Vehicle, but also has an Engine and Wheels.

This avoids the diamond problem (conflict from multiple parents).

Diamond Problem:

The Diamond Problem occurs in multiple inheritance when a class inherits
from two classes that both inherit from the same base class. This creates a
diamond-shaped hierarchy, leading to ambiguity: the compiler doesn't know
which version of the base class method or property to use.

Code:

interface Engine {

 void startEngine();

}

interface Wheels {

 void rotateWheels();

}

class Car implements Engine, Wheels {

 public void startEngine() {

 System.out.println("Engine started.");

 }

 public void rotateWheels() {

 System.out.println("Wheels are rotating.");

 }

 void carDetails() {

 System.out.println("I am a Car.");

 }

}

public class Main {

 public static void main(String[] args) {

 Car car = new Car();

 car.startEngine();

 car.rotateWheels();

 car.carDetails();

 }

}

Output:

Engine started.

Wheels are rotating.

I am a Car.

5. Hybrid Inheritance

Hybrid inheritance is a combination of multiple types of inheritance, such as
multilevel + hierarchical or hierarchical + multiple. Java allows this only via
interfaces.

Why we need it?

Sometimes real-world models are complex. You may need a class to:

● Inherit from a class (like Vehicle)

● And also implement multiple interfaces (like Engine, Wheels)

Hybrid inheritance helps create flexible and powerful systems by combining
different inheritance patterns.

When to use?

Use hybrid inheritance when:

● You need both shared properties (from classes)

● And independent features (from interfaces)

● You are building large-scale systems that need layered and mix-match
design

Example:

● Car is a Vehicle

● It also has an Engine and Wheels behavior

Code :

class Vehicle {
 void displayDetails() {
 System.out.println("I am a Vehicle.");
 }
}

interface Engine {
 void startEngine();
}

interface Wheels {
 void rotateWheels();

}

class Car extends Vehicle implements Engine, Wheels {
 public void startEngine() {
 System.out.println("Car engine started.");
 }

 public void rotateWheels() {
 System.out.println("Car wheels rotating.");
 }
}

public class Main {
 public static void main(String[] args) {
 Car car = new Car();
 car.displayDetails();
 car.startEngine();
 car.rotateWheels();
 }
}

Output:
I am a Vehicle.
Car engine started.
Car wheels rotating.

Summary

Type Description Example

Single One child inherits one parent Car inherits Vehicle

Multilevel Chain of inheritance ElectricCar → Car → Vehicle

Hierarchical Multiple classes inherit one
parent

Car, Bike, Truck ← Vehicle

Multiple (via
Interface)

Class inherits from multiple
interfaces

Car implements Engine, Wheels

Hybrid (via
Interface)

Combination of hierarchical &
multiple

Car extends Vehicle, implements
Engine, Wheels

Download Complete Notes from (Free)
www.topstudymaterial.com

http://www.topstudymaterial.com

Super Keyword in Java

The super keyword in Java is used to refer to the immediate parent class of a
subclass. It serves three main purposes:

🔹 Uses of super keyword:

1. To access the parent class data member (variable)
2. To access the parent class method
3. To call the parent class constructor

1. To Access Parent Class Data Members (Variables)

If a subclass has a field with the same name as the parent class, the super keyword
can be used to refer to the parent class field.

Example:

class Parent {

 int x = 100;

}

class Child extends Parent {

 int x = 200;

 void display() {

 System.out.println("Child x: " + x); // Accessing child class variable

 System.out.println("Parent x: " + super.x); // Accessing parent class variable

 }

 public static void main(String[] args) {

 Child obj = new Child();

 obj.display();

 }

}
OUTPUT:-
Child x: 200
Parent x: 100

2. To Invoke Parent Class Methods

When a subclass overrides a method from its superclass, you can use
super.methodName() to call the parent class version of the method.

Example:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 void sound() {

 super.sound(); // Calling parent class method

 System.out.println("Dog barks");

 }

 public static void main(String[] args) {

 Dog obj = new Dog();

 obj.sound();

 }

}

Output:

Animal makes a sound

Dog barks

3. To Invoke Parent Class Constructor

You can use super() to call the constructor of the parent class. This must be the
first statement in the subclass constructor.

Example:

class Vehicle {

 Vehicle() {

 System.out.println("Vehicle constructor");

 }

}

class Car extends Vehicle {

 Car() {

 super(); // Calls Vehicle constructor

 System.out.println("Car constructor");

 }

 public static void main(String[] args) {

 Car obj = new Car();

 }

}
Output:

Vehicle constructor

Car constructor

 Important Points

● super() must be the first line in a subclass constructor if used.

● If super() is not explicitly written, Java implicitly calls the no-arg
constructor of the superclass.

● Cannot be used in static methods.

Constructor Call Sequence

What is a Constructor?

A constructor is a special method in a class that is automatically called when an
object is created. It is used to initialize the object.

What is Constructor Call Sequence?

When you create an object of a class that inherits from another class, Java makes
sure that:

🔹 The parent class constructor is called before the child class
constructor.

This rule ensures that the base class part of the object is initialized before the
extended (child) part.

Real-Life Analogy: Family Hierarchy

Imagine three generations:

● Grandpa builds the house (base setup)

● Dad adds furniture (additional setup)

● You add your gaming PC (custom setup)

If you try to set up your PC before the house is ready, it doesn't make sense!
Similarly, Java ensures:

Parent constructor → Child constructor → Grandchild constructor

Why Constructor Call Sequence is Important?

1. It ensures that common features of all child classes (like number of wheels
in vehicles) are initialized first.

2. It builds a strong base before adding specialized behaviors.

3. Prevents runtime errors due to uninitialized fields or logic.

 Let's Break Down the Types with Examples:

✅ 1. Single-Level Inheritance with Default Constructor

class Vehicle {
 Vehicle() {
 System.out.println("Vehicle Constructor Called");
 }
}

class Car extends Vehicle {
 Car() {
 System.out.println("Car Constructor Called");
 }
}

public class Main {
 public static void main(String[] args) {
 Car c = new Car();
 }

}

▶ Output:
Vehicle Constructor Called
Car Constructor Called

Explanation:

● You created a Car object.

● Java first called the parent (Vehicle) constructor using super().

● Then it ran the Car constructor.

Even if we don’t write super(), Java automatically adds it as the first line.

2. Constructor with Parameters
class Vehicle {
 Vehicle(String type) {
 System.out.println("Vehicle Type: " + type);
 }
}

class Car extends Vehicle {
 Car(String type) {
 super(type); // Must be FIRST line!
 System.out.println("Car Constructor Called");
 }
}

public class Main {
 public static void main(String[] args) {

 Car c = new Car("SUV");
 }
}

▶ Output:
Vehicle Type: SUV
Car Constructor Called

Explanation:

● Since the parent Vehicle has no default constructor, you MUST call the
parameterized constructor using super(type).

● If you don’t, Java throws an error.

What if we forget super() here?

You’ll get:

Constructor Vehicle in class Vehicle cannot be applied to given types

Because Java doesn’t know which constructor to call without default.

✅ 3. Multilevel Inheritance Constructor Sequence
class Vehicle {

 Vehicle() {
 System.out.println("Vehicle Constructor");
 }
}

class Car extends Vehicle {
 Car() {
 System.out.println("Car Constructor");
 }
}

class ElectricCar extends Car {
 ElectricCar() {
 System.out.println("ElectricCar Constructor");
 }
}

public class Main {
 public static void main(String[] args) {
 ElectricCar e = new ElectricCar();
 }
}

▶ Output:
Vehicle Constructor
Car Constructor
ElectricCar Constructor

Explanation:

● ElectricCar() calls Car() → Car() calls Vehicle()

● Constructors are called from parent to child

● This is called Constructor Chaining

More on super() and this()

Keywo
rd

Purpose Where it goes Used for

super() Calls parent class
constructor

First line of child
constructor

Inheritance

this() Calls another constructor
in the same class

First line of current
class constructor

Constructor
overloading

Download Complete Notes from

www.topstudymaterial.com
Completely Free

http://www.topstudymaterial.com

Method Overriding in Java

Method Overriding means redefining a method in the child class that is already
defined in the parent class.

 It allows a child class to provide its own version of a method that is already
present in its parent class.

Why Do We Need Method Overriding?

● To change or extend the behavior of a method for a specific subclass.

● To achieve runtime polymorphism (method call decided at runtime).

● To make the program more dynamic and flexible.

Real-Life Example:

Suppose you have a class Animal with a method makeSound(). But all animals
make different sounds.

class Animal {
 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

Now, Dog and Cat can override this method to give their own behavior.

Method Overriding – Rules

Rule Description

Method
name

Must be the same

Parameters Must be the same (same number, type, order)

Return type Must be same or covariant

Access
level

Can be more visible (e.g., protected → public)

Final
method

❌ Cannot override a final method

Static
method

❌ Static methods are not overridden, they are
hidden

Constructor ❌ Constructors cannot be overridden

Basic Example: Method Overriding
class Animal {
 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

class Dog extends Animal {
 void makeSound() {
 System.out.println("Dog barks");
 }
}

public class Main {

 public static void main(String[] args) {
 Dog d = new Dog();
 d.makeSound(); // Dog's version is called
 }
}

▶ Output:
Dog barks

Even though makeSound() is defined in Animal, the Dog class overrides it with its
own version.

Polymorphism Using Overriding
class Animal {
 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

class Cat extends Animal {
 void makeSound() {
 System.out.println("Cat meows");
 }
}

public class Main {
 public static void main(String[] args) {
 Animal a = new Cat(); // Parent reference, child object
 a.makeSound(); // Calls Cat’s version
 }
}

▶ Output:

Cat meows

This is runtime polymorphism — Java decides which method to call at runtime
based on the actual object type.

What If We Don’t Override?
class Animal {
 void makeSound() {
 System.out.println("Generic animal sound");
 }
}

class Cow extends Animal {
 // No overriding
}

public class Main {
 public static void main(String[] args) {
 Cow c = new Cow();
 c.makeSound(); // Will use Animal's version
 }
}

▶ Output:
Generic animal sound

Example with super Keyword

You can call the parent class version of the method using super.

class Vehicle {
 void start() {
 System.out.println("Vehicle is starting...");
 }
}

class Car extends Vehicle {
 void start() {
 super.start(); // Calls Vehicle's method
 System.out.println("Car is ready to go!");
 }
}

public class Main {
 public static void main(String[] args) {
 Car c = new Car();
 c.start();
 }
}

▶ Output
Vehicle is starting...
Car is ready to go!

What Can’t Be Overridden?

Type Can it be overridden?

final method ❌ No

static method ❌ No (it’s method hiding, not
overriding)

private
method

❌ No (not visible in child)

Constructor ❌ No (not inherited)

 Overriding vs Overloading

Feature Overriding Overloading

Purpose Modify parent
method

Define multiple
methods

Parameters Must be same Must be different

Inheritance Required Not required

Runtime/Comp
ile

Runtime Compile time

Download Complete Notes from
www.topstudymaterial.com

Completely Free

http://www.topstudymaterial.com

 Dynamic Method Dispatch (Runtime
Polymorphism)

Dynamic Method Dispatch is the process through which a call to an overridden
method is resolved at runtime, not compile time. It’s how Java decides which
method version to call when a superclass reference refers to a subclass object.

Java Example: Dynamic Method Dispatch
class Animal {
 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

class Dog extends Animal {
 void makeSound() {
 System.out.println("Dog barks");
 }
}

class Cat extends Animal {
 void makeSound() {
 System.out.println("Cat meows");
 }
}

public class Main {
 public static void main(String[] args) {
 Animal a; // Parent reference

 a = new Dog(); // Dog object

 a.makeSound(); // Dog’s version is called
 a = new Cat(); // Cat object
 a.makeSound(); // Cat’s version is called
 }
}

▶ Output:
Dog barks
Cat meows

 Even though the reference type is Animal, the method that gets executed is
based on the actual object type (Dog or Cat) at runtime.

 Method Overriding vs. Dynamic Method Dispatch

Feature Method Overriding Dynamic Method
Dispatch

What is it? Redefining a method
in the subclass

Process of selecting the
overridden method

When? Defined at coding
time

Happens during program
execution (runtime)

Involves? Method signature and
body

Object reference and actual
object

Polymorphism? Enables it Implements it

Focus On defining methods On calling the correct
method at runtime

Reference type
needed?

No (works in child
class too)

Yes, reference should be of
parent class

Download Complete Notes from
www.topstudymaterial.com

Completely Free

http://www.topstudymaterial.com

Abstract Class in Java

An abstract class in Java is a class that cannot be instantiated on its own. It
is meant to be a base class for other classes. It may contain:

● Abstract methods (without a body)

● Concrete methods (with a body)

● Constructors

● Static methods

● Final methods

It is declared using the abstract keyword:

Important Points:

1. Cannot create objects of abstract class directly.

2. Can have constructors, which are called when subclass objects are created.

3. Abstract class can have both abstract and non-abstract methods.

4. A class must be declared abstract if it contains one or more abstract
methods.

5. Subclasses must implement all abstract methods unless they are also
declared abstract.

When to Use Abstract Classes?

● When you want to provide a common base with shared code.

● When you want to enforce certain methods in derived classes.

● When classes are closely related and share a common structure or behavior.

For Example, imagine "Vehicle" as an abstract class. You never say “I have a
vehicle.” You say “I have a bike” or “I have a car.” But “vehicle” gives a common
base – all vehicles can move, but the way they move may differ.

Why Do We Need Abstract Classes?

1. To Provide a Common Base for Related Classes

An abstract class lets you define a common template (structure + partial
implementation) for all its subclasses.

 2. To Enforce Method Implementation in Subclasses

By declaring methods as abstract, you force all subclasses to override and
implement them, ensuring a consistent structure.

3. To Achieve Partial Abstraction

Unlike interfaces (which are 100% abstract in older Java versions), abstract classes
allow partial abstraction:

● Some methods can have implementations (concrete methods).

● Others can be left abstract for subclasses to define.

This is helpful when some functionality should be reused as-is, and other
functionality should be customizable.

4. To Avoid Object Creation of Incomplete Classes

If a class is not complete on its own, it should not be instantiated. Making it
abstract ensures that only its concrete subclasses can be used to create objects.

5. To Use Constructors in Base Classes

Abstract classes can have constructors, which can be used to initialize common
fields. Interfaces cannot have constructors.

6. To Create a Framework or Template

Abstract classes are often used in large frameworks and libraries to define a
template method where the basic structure is fixed, but certain steps can be
overridden by subclasses.

Abstract Class:

Concrete Class:

Output:

Download Free Notes from
www.topstudymaterial.com

PPL- Unit 4
Managing I/O: Streams, Byte Streams and

Character Streams
Streams: In Java, a stream is a sequence of data used to perform input and output
(I/O) operations. It acts like a pipeline through which data flows.

Types of Streams in Java
1. Byte Streams
2. Character Streams

1. Byte Streams

Used to perform input and output of 8-bit bytes, suitable for handling
binary data such as images, audio, and video files.

Base Classes:

● InputStream (abstract class for reading byte data)

● OutputStream (abstract class for writing byte data)

Class Name Description

FileInputStream Reads raw bytes from a file

FileOutputStream Writes raw bytes to a file

BufferedInputStream Adds buffering to InputStream for faster
reading

BufferedOutputStream Adds buffering to OutputStream for faster
writing

DataInputStream Reads Java primitive data types in a
machine-independent way

DataOutputStream Writes Java primitive data types

Example of ByteStream Class:

FileInputStream fis = new FileInputStream("image.jpg");
FileOutputStream fos = new FileOutputStream("copy.jpg");

int byteData;
while ((byteData = fis.read()) != -1) {
 fos.write(byteData);
}
fis.close();
fos.close();

 2. Character Streams

Used to perform input and output of 16-bit characters, suitable for handling text
data (strings, characters, etc.).

 Base Classes:

● Reader (abstract class for reading characters)

● Writer (abstract class for writing characters)

 Common Character Stream Classes:

Class Name Description

FileReader Reads characters from a file

FileWriter Writes characters to a file

BufferedReader Buffers characters for efficient reading

BufferedWriter Buffers characters for efficient writing

PrintWriter Writes formatted text (console or file)

CharArrayReader Reads characters from a character array

CharArrayWriter Writes characters to a character array

Example of CharacterStream Class:

FileReader fr = new FileReader("notes.txt");
BufferedReader br = new BufferedReader(fr);
String line;
while ((line = br.readLine()) != null) {
 System.out.println(line);
}
br.close();

For more detailed notes visit www.topstudymaterial.com

	Need of single inheritance:
	 2. Multilevel Inheritance
	Why we need it?
	When to use?

	
	 3. Hierarchical Inheritance
	Why we need it?
	When to use?

	4. Multiple Inheritance (via interfaces in Java)
	Why we need it?
	When to use?

	5. Hybrid Inheritance
	Why we need it?
	When to use?

	🔹 Uses of super keyword:
	1. To Access Parent Class Data Members (Variables)
	If a subclass has a field with the same name as the parent class, the super keyword can be used to refer to the parent class field.
	Example:

	class Parent {
	 int x = 100;
	}
	
	class Child extends Parent {
	 int x = 200;
	
	 void display() {
	 System.out.println("Child x: " + x); // Accessing child class variable
	 System.out.println("Parent x: " + super.x); // Accessing parent class variable
	 }
	
	 public static void main(String[] args) {
	 Child obj = new Child();
	 obj.display();
	 }
	}
	2. To Invoke Parent Class Methods
	When a subclass overrides a method from its superclass, you can use super.methodName() to call the parent class version of the method.
	Example:

	class Animal {
	 void sound() {
	 System.out.println("Animal makes a sound");
	 }
	}
	class Dog extends Animal {
	 void sound() {
	 super.sound(); // Calling parent class method
	 System.out.println("Dog barks");
	 }
	
	 public static void main(String[] args) {
	 Dog obj = new Dog();
	 obj.sound();
	 }
	}
	Output:
	Animal makes a sound
	Dog barks
	3. To Invoke Parent Class Constructor
	You can use super() to call the constructor of the parent class. This must be the first statement in the subclass constructor.
	Example:

	class Vehicle {
	 Vehicle() {
	 System.out.println("Vehicle constructor");
	 }
	}
	
	class Car extends Vehicle {
	 Car() {
	 super(); // Calls Vehicle constructor
	 System.out.println("Car constructor");
	 }
	 public static void main(String[] args) {
	 Car obj = new Car();
	 }
	}
	Vehicle constructor
	Car constructor
	
	 Important Points
	●super() must be the first line in a subclass constructor if used.
	●If super() is not explicitly written, Java implicitly calls the no-arg constructor of the superclass.
	●Cannot be used in static methods.

	Constructor Call Sequence
	What is a Constructor?
	Why Constructor Call Sequence is Important?
	 Let's Break Down the Types with Examples:
	✅ 1. Single-Level Inheritance with Default Constructor
	▶ Output:
	Explanation:
	▶ Output:
	
	
	Explanation:
	What if we forget super() here?
	✅ 3. Multilevel Inheritance Constructor Sequence
	▶ Output:
	Explanation:

	More on super() and this()
	Why Do We Need Method Overriding?
	Real-Life Example:
	Method Overriding – Rules
	Basic Example: Method Overriding
	▶ Output:
	▶ Output:

	What If We Don’t Override?
	▶ Output:
	▶ Output

	What Can’t Be Overridden?
	 Overriding vs Overloading
	 Dynamic Method Dispatch (Runtime Polymorphism)
	Java Example: Dynamic Method Dispatch
	▶ Output:

	
	
	
	
	
	
	
	
	
	
	 Method Overriding vs. Dynamic Method Dispatch
	Important Points:
	When to Use Abstract Classes?
	1. To Provide a Common Base for Related Classes
	3. To Achieve Partial Abstraction
	4. To Avoid Object Creation of Incomplete Classes
	5. To Use Constructors in Base Classes
	6. To Create a Framework or Template

	Base Classes:
	Example of ByteStream Class:
	 2. Character Streams
	 Base Classes:
	 Common Character Stream Classes:

