Unit 3:Adversarial Search and
Games



Constraint Satisfaction Problem

 The constraint satisfaction problem cogsists of three

.....

components: AV
) X- set of Variables N
i) D- Set of Domains (one for each variable)
il C- set of constraints \,\‘\}
\0\

e A constraint satlsfacu@n problem ( CSP ) is a problem where
variables must be aSS|gned values that satisfy certain
constraints.



Examples of Constraint satisfaction Problems

e nN-queen problem: In n-queen problem, the constralnt Is that no queen
should be placed either diagonally, in thesat%e row or column.

e Cryptarithmetic Problem: This pre@fem has one most important
constraint that Is, we cannot @\LSSIgn a different digit to the same
character. All digits should cont:ém a unique alphabet.

e Sudoku: every row, column\and 3* 3 board should have unique digit.

e Graph/map coloring problem no two adjacent region have same

colour.



Constraint satisfaction Problems

An assignment of values to a variable can be don\e in three ways:

e Consistent or Legal Assignment: An aS\SIgnment which does not violate
any constraint or rule is called Consstemtbr legal assignment.

e Complete Assignment: An as&gatﬁ\ént where every variable is assigned
with a value, and the solut\on to the CSP remains consistent. Such
assignment is known as ComBlete assignment.

e Partial Assignment: An“ aSS|gnment which assigns values to some of the

variables only. Such type of assignments are called Partial assignments.
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Constraint Types in CSP
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With respect to the variables, basically there arejeﬂlowmg types of constraints:

e Unary Constraints: It is the S|mplest~\t?pe of constraints that restricts the

Q’\\(/
value of a single variable.
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e Binary Constraints: It is the cé?'lstralnt type which relates two variables. A
value x2 will contain a value thch lies between x1 and x3.

e Global Constraints: It TS the constraint type which involves an arbitrary

number of variables.
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Constraint Pg@ﬁagation In CSP
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Constraint Propagation

Constraint Propagation is a technique used in Constraint Satisfaction
Problems (CSPs) to reduce the search space f}y enforcing constraints before
or during the search. It systematically elmnnates inconsistent values from
variable domains by applying constralnt{ir\teratlvely

,.\
How Constraint Propagation V\A@]fks
Each variable in a CSP has a @Qmaln of possible values.
Constraints restrict which vaiues can be assigned to variables.
Constraint propagation reduces domains by eliminating values that violate
constraints, making the search process more efficient.



Benefits of Constraint Propagation

* Reduces the search space by eliminating mconsTstent values early.
« Helps avoid unnecessary backtracking in s\éarch algorithms.

« Improves efficiency, especially in Iarge\CSPs
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Applications of Constraint Propagation

« Sudoku Solving (removing invalid numbers from each row, column, and
block). \f\?
« Scheduling Problems (ensuring time S|Qf§ do not overlap).
X
« Graph Coloring (ensuring no two adlg@ent nodes have the same color).

« Al Planning (optimizing task as&g@ments and dependencies).
\/



Types of consistencies

There are following local consistencies which are\glscussed below:
e Node Consistency: A single variable is seld to be node consistent if all the
values in the variable’s domain satisfy the. uhary constraints on the variables.
e Arc Consistency: A variable is arc con\S|stent if every value in its domain satisfies
the binary constraints of the van&gl\es
e Path Consistency: When the\é\/aluatlon of a set of two variable with respect to
a third variable can be gxtended over another variable, satisfying all the binary

constraints. It is similar to arc consistency.



1. Node Consistency (1-Consistency)

A node (variable) is node-consistent if all values in its domain satisfy its unary constraints.

- L] L3 \{\
Definition: \O
70\
&
A variable X is node-consistent if for every value v € @%\X) v satisfies all unary constraints on X.
&
Example: >

Consider a variable X with domain D X\)\(%{l 2,3,4,5} and a unary constraint X > 2.
* Node Consistency Check: Remo \gp”\/alues 1and 2 since they do not satisfy X > 2.
¢ Resulting Domain: D(X) = {3,4,5}



2. Arc Consistency (2-Consistency)

An arc (directed edge) between two variables is arc-consistent if for every value of one variable, there

exists a valid value in the other variable's domain that satisfies the constraint.
A
&
Definition: O
N
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A constraint between two variables X and Y is arc—cox@}tent if:
\(/

&
Ve € D(X),dy € D(Y) such that\;&ﬁg\y) satisfies the constraint on (X,Y).
\
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Example:

Suppose we have variables:
e X with domain {1, 2, 3}
e Y with domain {1, 2, 3}

N
N

e Constraint X <Y



Checking Arc Consistency:
1. For X = 1 — valid valuesin Y are {2,3}
2. For X = 2 — validvaluein Y is {3]
3. For X = 3 — novalidvalueinY \@mmre 3 from D X))

R4
Updated Domains: 4\’5@
e D(X)={1,2} Q&?
. - 2
D(Y) = {1,2,3} K

‘x’&.
Arc consistency can be sﬁ}m rced using the AC-3 algorithm.



3. Path Consistency (3-Consistency)

A path involving three variables is path-consistent if for every valid assignment to two variables, there

exists a valid assignment for the third variable.
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Definition:

NS
A CSP is path-consistent if for every pair of variables X a@\f’/' and for every value (z, y) satisfying the
binary constraint between them, there exists a value @@?\D(Z) such that (z, z) and (y, 2) satisfy the

constraints. (3\5

Example: R\OQ
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Consider variables X, Y, Z with dor&@'ﬂ ;
« D(X) ={1,2}
D(Y) = {2,3}
D(Z) = {3,4} y



Constraints:

e X<Y
e Y<Z 006\
N
R4
Checking Path Consistency: xQ

o
&
. (X=1Y =2)musthave Z >2 \}&(}/alid values in Z are {3,4})
N\

o
2. (X =2,Y =3)musthave Z >3 .0% . (valid valuein Z is {4})

§$

Since for every pair of values, there eﬁts a value in the third variable satisfying the constraints, the

problem is path-consistent.



Local Consistency Levels

Nogood: forbidden tuple of values
* In the initial constraints
» Discovered during search / local consistency process

Local consistency levels: nogood size

* Node consistency: 1-consistency 0

- . . removes values
* Arc consistency: 2-consistency 1 Biniin st aealic

 Path consistency: 3-consistency 2  discovers forbidden
value pairs

3 i . _4 discovers forbidden
* IS ConS|StenCy' K-1 value combinations




Constraint Satisfaction: Propagation

Node consistency

Node consistency requires that every unar\y«constramt on a variable is
satisfied by all values in the domain of the variable, and vice versa. This
condition can be trivially enforced by re.ducmg the domain of each variable to
the values that satisfy all unary const(a}nts on that variable.

For example, given a variable {\&}

with a domain of {1,2,3,4} &

and a constraint {V<3} N

Node consistency would restrict the domain to {1,2} and the constraint could
then be discarded.



Node Consistency (NC)

NC:

- Variable x;is node consistent iff every value
of D, is allowed by R,

- Pis NC iff every varlable SN Unitary
constraint
on X;

NC Algorithm: =
procedure NC-1 (X,D,C)

for all x,eX do - D = D AR,

for all ae D, do BV '
L | 3£ a¢ R; then D;:= D;—{a}l;

=



Constraint Propagation:Inference in CSPs

Arc Consistency

.....

e The pair (X, Y) of constraint vanabl&s is arc consistent if for each

7 \

value &>
XEDX there exists a value y\e\-DY such that the assignments X = X
and Y =y satisfy all bmare]\constralnts between X and Y. A CSP is
arc consistent if all vanable pairs are arc consistent.

e Consider a simple CSP with the variables A and B subject to their

respective domains DA={1,2} and DB={1,2,3} , as well as the

hinarys eonctraint A <« R \A/a can that \vvaliie 1 ~ran hea cafalyvr remnyad



Filtering by Arc Consistency

If for a € D, there not exists b € D; such that (a, b)e R;,
a can be removed from D; (a will not be in any sol)

Domain filtering:
 Remove arc-inconsistent values
« Until no changes

Example:
Xi
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Arc Consistency
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Figuse 310 A matehing dispeam deseribing the are-consistency of twe variables & and 4.
In (n) the variabdes are not arc-eomsistent. In (b} the domaing have been reduesd, and
Lhee viariialoes are pow arc-consitel.




Revise for arc-consistency

REVISE((#:),2;)
’\
input: a subnetwork defined by two variables X = { } a distinguished variable z

domains: D; and D;, and constraint R;; \/g,x\
output: D;, such that, :r.i, arc-consistent relative$o z;
1. for each a; € D, &"\\(
2. if there is no a; € D; such that (,@ a;) € Ry
3. then delete a; from D;Q”
4. endif & \@
5. endfor &

Figure 3.2: The Revise procedure
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Path-consistency

Definition 3.3.2 (Path-consistency) Gien a constramt network R = (X,D,C), a

two wvariable set {zi,z;} is path-consistent relative to ,ngble Tk if and only if for every
consistent assignment (< x;,a; >, < Tj,a; >) thr;{@% a value ay € Dy s.t. the assign-
ment ({ T, @ >, < Ty, 0 }) 15 consistent un@@{ Tp, 0y =, < T, 04 }} i5 consistent.
Alternatively, a binary constraint Ry; s pa@%ﬂnmstent relative to xy iff for every pair
(a5, a;), € Ry;, where a; and a; are from their respective domains, there is a value ay € Dy
st. (a;,ar) € Ry and (ay,q;) € ROA subnetwork over three variables {x;,z;, zx} 1
path-consistent iff for any pﬁrmut\@‘%ﬁ of (4,7, k), Rij is path consistent relative to zy. A
network is path-consistent iff foR‘every Ri; (including universal binary relations) and for

every k # 1,7 Hy; is path-consistent relative to .

N\ _/




/ Path-consistency \

A
_ REVISE-3((z,¥), 2) 0{3&
input: a three-variable subnetwork over (2. vy, z), Ryy, Ry, R...
output: revised R., path-consistent with 2.
1. for each pair (a,b) € Ry, ,(\(b
2. if no value ¢ € D, exists s&;&] that (a,¢) € Rz, and (b,¢c) € Ry.
3. then delete (a, b%@ﬁ)m R_,.
4. endif Q
5. endfor O

‘x’& .
@\33"

\ Figure 3.9: Revise-3 /




Example: before and after path-

consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency




Backtracking Search

N Queen
Gap coloring
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