Knowledge Representation

What is knowledge representation?

e Humans are best at understanding, reasoning, and interpreting knowledge.

e Human knows things, which is knowledge and as per their knowledge they
perform various actions in the real world.

e But how machines do all these things comes under knowledge representation
and reasoning.

e Knowledge representation and reasoning (KR, KRR) is the part of Artificial
intelligence which concerned with Al agents thinking and how thinking
contributes to intelligent behavior of agents.

Knowledge representation

e |t is responsible for representing information about the real
world so that a computer can understand and can utilize this
knowledge

e It is also a way which describes how we can represent
knowledge in artificial intelligence.

e Knowledge representation is not just storing data into some
database,but it also enables an intelligent machine to learn
from that knowledge and experiences so that it can behave
Intelligently like a human.

Types of Knowledge
1. Declarative Knowledge:

Declarative knowledge is to know about something.

It includes concepts, facts, and objects.

It is also called descriptive knowledge and expressed in declarative sentences.
It is simpler than procedural language.

2. Procedural Knowledge

e Itisalso known as imperative knowledge.

e Procedural knowledge is a type of knowledge which is responsible for knowing how to
do something.

e It can be directly applied to any task.

e ltincludes rules, strategies, procedures, agendas, etc.

e Procedural knowledge depends on the task on which it can be applied.

Types of Knowledge

3. Meta-knowledge:
e Knowledge about the other types of knowledge is called Meta-knowledge.

e Some examples of meta knowledge include planning, learning.

4. Heuristic knowledge:

e Heuristic knowledge is representing knowledge of some experts in a field or

subject.
e Heuristic knowledge is rules of thumb based on previous experiences, awareness

of approaches.

Types of Knowledge

5. Structural knowledge:

e Structural knowledge is basic knowledge to problem-solving.
e |t describes relationships between various concepts such as kind of, part of, and
grouping of something.

e |t describes the relationship that exists between concepts or objects.

Relation between knowledge and intelligence:

Ny

: Decision
Sensing —

maker

Knowledge

i v.—l :

Action

Knowledge plays an important
role in demonstrating intelligent
behavior in Al agents.

An agent is only able to
accurately act on some input
when he has some knowledge
or experience about that input.

Logical Agents

« Knowledge-based agents — agents that have an explicit

representation of knowledge that can be reasoned with.

* These agents can manipulate this knowledge to infer new things

at the “knowledge level”

Knowledge Based Agents
Both TELL and ASK operations may involve inference.

Inference for deriving new sentences from old.

Job of inference: Inference must obey the requirement that
when one ASKs a question of the knowledge base, the
answer should follow from what has been told (or TELLed)
to the knowledge base previously.

Inference process should not make things up as it goes along.

™ Inference
A Engine

Rules / .
query conclusions
L r

Knowledge Based Agents

Like all agents, it takes a percept as input and returns an action.

The agent maintains a knowledge base, KB, which may initially contain
some background knowledge

Each time the agent program is called, it does three things.
1. First, it TELLs the knowledge base what it perceives / input.
2. Second, it ASKs the knowledge base what action it should perform.

In the process of answering this query, extensive reasoning may be done
about the current state of the world, about the outcomes of possible
action sequences, and'so on.

3. Third, the agent program TELLs the knowledge base which action
was chosen, and the agent executes the action.

Generic Knowledge-Based Agent

function KB-AGENT (percept) returns an action

persistent: KB, a knowledge base

t, a counter, initially O, indicating time (t is-an time counter with initial value 0)

TELL(KB,MAKE-PERCEPT-SENTENCE((percept’, t))
action —ASK(KB,MAKE-ACTION-QUERY (1))
TELL(KB,MAKE-ACTION-SENTENCE(action, t))
t—t+1
return action

« Given a percept, the agent adds the percept to its knowledge base, asks the knowledge
base for the best action, and tells the knowledge base that it has in fact taken that action.

Generic Knowledge-Based Agent

The details of the representation language are hidden inside three functions.

MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent
perceived the given percept (Information) at the given time.

MAKE-ACTION-QUERY constructs a sentence that asks what action should
be done at the current time.

MAKE-ACTION-SENTENCE constructs a sentence asserting that the
chosen action was executed.

The details of the inference mechanisms are hidden inside TELL and ASK.

A simple knowledge-based agent

* The agent must be able to:

Represent states, actions, etc.

Incorporate new percepts

Update internal representations of the world
Deduce hidden properties of the world

Deduce appropriate actions

A Wumpus World

T eSs
SEnch =

o e e
=Hl=nch =

S TART

Wumpus World PEAS description

e Performance measure

o

O

gold +1000, death -1000
-1 per step, -10 for using the arrow

e Environment: 4 x 4 grid of rooms

O

O O O O O

O

e Sensors: Stench, Breeze, Glitter, Bump, Scream (shot Wumpus)
e Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy

Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

5 esTy
Sench >

PIT
-~ Bresze — -
P il "':‘."E;EEE -
LT EY FIT e
Slench =
A LD
= ~/ Gald § i"
5 €5g -
Stench g ﬁgﬁ'ﬂg =
“= Erpere — “= Eroere —
~— | —

START

1

Wumpus world characterization

« Fully Observable No — only local perception

« Deterministic Yes — outcomes exactly specified

« Episodic No — sequential at the level of actions

« Static Yes — Wumpus and Pits do not move

« Discrete Yes

« Single-agent? Multi — (wumpus, eventually other agents)

Wumpus World R FFERE = .
Percepts given to the agent s é’f—j o VA
Stench il b LN

A ZEmaz
Breeze :
Glitter p—_, P,
- 1 ~— T
Bumb (ran into a wall)
Scream (wumpus has been hit by arrow) 1 S

O W HE e

Principle Difficulty: agent is initially ignorant of the
configuration of the environment — going to have to reason
to figure out where the gold is without getting killed!

Exploring the Wumpus World

14 2.4 34 44

13 23 33 43

12 75 32 42
OK

1.1 2,1 31 4,1
OK OK

= Agent
B =Breeze
G = Glitter, Gold
OK = Safe square
P =Pi

S = Stench
vV = Visited
W = Wumpus

Initial situation:

Agent in 1,1 and percept is
[None, None, None, None,
None]

From this the agent can infer
the neighboring squares are
safe (otherwise there would
be a breeze or a stench)

OK OK

(b)

Sample Run

1.4 =Z.=1 3.4 1=l
1.5 Z.3 =z 2.5
1.2 2.2 2.2 =2
O

1.1 @ 2.1 3.1 =1.1
O Cr O

Percept: [[None, INone, INone, INone., INone]

Deduce: Agent alive, s (1,13 OK
INo brecze, s (1L.2Z) and (2.1 (OFK

1.1 2.1 e =] _ =1

1.5 2.3 2.1 2.5

1.2 2= a2 =] 2

I

1.1 @ 2.1 3.1 =]_ 1

R LA L

Percepit: [TNone, TNonne, Nonmne, TNonae, TNonae]

Deduce: Aagent alive, s> (L. 1Ly O
™™o brecezae, so (123 and (2.1 (OFKD

Sample Run

1.4 Z.4 3.4 4.4
1.3 Z.3 2. 2.5
1.2 z.Z 3.2 4.2
O P

1.1 2.1 @ 3.1 2.1
O OK P

FPercept: [[None, Breeze, None, None, None]

Deduce: Pit in (Z2.Z) or (313

Sample Run

1. = _ -1 3_-1 21
1.3 z. 3 = 1 .S
1.2 =z 3.z PR
3 P

1.1 2.3 (o 3.1 = |
O O P

Percept: [[None, Breeze, INone, None, TNone]

Daeduce: Pit in 2. 23 o (3.1

Sample Run

1.4 =] 3.4 R
1.3 Z2.3 2.4 2.5
A

5 Bk o 7
1.1 Z.1 3.1 .1
O O K P

Percept: [Stench. INone, TNone, TNone, TNoneae]

Deduce: YWumpus in (1.3)
Ne pit 10 (223, pit 1nx 3.1

Sample Run

1.4 2 1 3 <1 2.1
1.3 Z.3 3.3 4.3
Y

5 5% 32 2
1.1 Z.1 3.1 .1
OK OK P

Percept: [Stench, TNone, None, None, TNoneae]

Deduce: WWwWumpus in (1 .3)
MNo it in (Z.2), pit inn £3.1)

Sample Run

1.2 Z.4 3.<1 ==l
P

1.3 Z.3 AD 3.3 4.3

O o

o L=

1.2 Z.2 3.2 <2

O L

1.1 2.1 3.1 a1

O O P

Percept: [Stench. Breeze., Glhitter, TNMoOone.,

Deduce: Pit i €244 o (3. 30
Gold i 2. 3)

Aoction: Wiowe o (2.2 fournm ght, goforsa
L oenore prercept for o

Ml we o 2.3 (turnleft, goforsawa

Sample Run

1._-1 = _1 =_-1 =1 _=1
| ety
1.3 2.3 LA =5 =1 _ =
L =
T L
1_=> =_= =_= =1 _ =
L L
1.1 =>_1 =_ad =}. A4
L L | =
Paeraaae - IStench, Breczc, (SFlitter, TN oaonmnae, TNaomnae

Iecdvac e - FPit 1y €2 _ =1 o £S5 3>
CSerlcd i €2 30

Sample Run

e = o > e Now we look at
1.3 23 @ 3.3 - 43 « How to represent facts / beliefs
G ' v “There is a pitin (2,2) or (3,1)”
5w S 32 4.2 « How to make inferences
v “No breeze in (1,2), so pitin
1.1 2.1 3.1 4.1 (3 1)”
OK OK P ’

Percept: [Stench, Breeze, Glitter, None, None]

Deduce: Pit in (2,4 or (3.3)
Gold in (2.3)

Logic + Reasoning + Inference

The knowledge bases consist of sentences.

These sentences are expressed according to the syntax of the
representation language

Example, “x + y = 4” is a well-formed sentence, whereas “x4y+ =”
IS not.

A logic must also define the semantics or meaning of sentences.

The semantics defines the truth of each sentence with respect to
each possible world.

For example, the semantics for arithmetic specifies that the sentence
“x +y =4"1s true in a world where x is 2 and y Is 2, but false in a
world where xis1landy is 1.

In standard logics, every sentence must be either true or false only.

Logic + Reasoning + Inference

Sentence: Individual piece of knowledge

- English sentence forms one piece of
knowledge in English language

- Statement in C++ forms one piece of
knowledge in C++ programming language

Syntax: Form used to represent sentences
- Syntax of C indicates legal combinations
of symbols

-a=2+3;is legal

-a=+23isnot legal

- Syntax alone does not indicate meaning

Semantics: Mapping from sentences to facts
in the world

- They define the truth of a sentence in a
“possible world”

- Add the values of 2 and 3, store them in the
memory location indicated by variable a

In the language of arithmetic:
X+ 2 >=y Isasentence

X2 +y > Isnot a sentence

X+ 2>=vy istrue in all worlds where

the number x + 2 is no less than the number y

X + 2 >=y s true in a world where
x=7,y=1

X +2 >=y is false in a world where
Xx=0,y=6

Knowledge Representation Languages and Inference

A KR language is specified by
« Syntax: The atomic symbols used in the language and
how they can be composed to formal legal sentences.
« Semantics: What fact about the world Is represented by
a sentence in the language, which determines whether it is true or

false.
Sentences - = Sentence
Entails
Represeniaiion §J §:
y [-1]
_________ %.______________________E -
Warid o @
¥
Facts - Fact

Follows

Knowledge Representation Languages and Inference
« Logical inference (deduction) derives new sentences in the language

from existing ones.

Socrates I1s a man.
All men are mortal.

Socrates i1s mortal.

Proper inference should only derive sound conclusions. (ones that are true assuming

the premises are true)

Propositional Logic Syntax

Logical constants: True, False
Propositional symbols: P, Q, etc. representing specific facts about the world.
Constants and symbols are atomic, other sentences are complex.
If S is a sentence, then (S) is a sentence
If S and R are sentences then so are:
S A R: conjunction, S and R are conjuncts
S v R: disjunction, S and R are disjuncts
S = R: implication, S is a premise or antecedent,
R is the conclusion or consequent, also known as
a rule or if-then statement
S & R: equivalence (biconditional implication)
S negation
A literal is an atomic sentence or its negation (P, =S)
Precedence of operators: =, A, V, =, ©

Propositional Logic Semantics

True and False indicate truth and falsity In

the world.

N nronncitinn Adanntac wihataviar fivod
P 0 P Pr{ Pug P= 0 P
False False Figil False Falze Irig Trig 1
Falsa T Figll False Tmig Irig Falze
Trug False False False Tmig Faize Falze
Trug True False True Tnie Trig I'e |2

gerived Trom the semantics OT thelr parts
according to the following truth table.

e A sentence t

Validity and Inference

« An Interpretation is an assignment of True or False
to each atomic proposition.

nat IS true under any mterpretatlon IS

_valid Ied_a_tamojmm_anajmg_sentence)
F H (BvE) -H | (PvH) H = F
Faise False F.“.’.'..-i' Fale Figlt: P lor ng
False Inig g False Figl:
iyl Failse Inig i iy,
g Tnig g False Figil

Logical equivalence

Two sentences are logically equivalent iff true in same models: a = 3 iff

afFBandBFa

(aAB) = (BAa) commutativity of A
(aV pB) = (BVa) commutativity of V
(e AB)A7y) = (A (B A7y)) associativity of A
(aVvB)Vy) = (aV(BVy)) associativity of V
-(—) = a double-negation elimination
(@ =) = (-8 = —a) contraposition
(o =) = (-« V () implication elimination
(¢ & B) = ((¢ = B) AN (B = «)) biconditional elimination
(A p) = (naV—-F) de Morgan
“(aV f) = (raA—fF) de Morgan
(@A (BVY) = (aAB)V(aNy)) distributivity of A over V
(aV(BAY) = (aVB)A(aVy)) distributivity of V over A

Models and Entailment

 Entallment: the relation between a
sentence and another sentence that

follows from 1t a1 _
to a simple.

* Any Interpretatiot
IS true 1Is calle

sentence. (Venn L.ugiwi,

1_
!r" |:|

)

Pl |@

|

P

P | @ i .
oA

~ leads

itence

D I the

Models and Entailment

« A sentence A entails a sentence B, (A |= B) if every model
of A is also a model of B. In this case, if A is true then B

must be true.

« Correct logical inference is characterized by entailment, we
want to be able to infer whether a statement S follows from a
knowledge base:

KB |= S
or
(KB -> S) is valid

Validity and Inference

Inference can be performed by validity checking.

If one has a set of sentences:. {S,,... S,} defining
one’s background knowledge, and one want to
know whether a conclusion C logically follows,
construct the sentence:

SIANS,ALAS, = C
and check whether it is valid.
How many rows do we need to check?

Satisfiability and Complexity of Inference

A sentence Is satisfiable If it is true under some
Interpretation.

Means it has a model, otherwise the sentence Is
unsatisfiable.

A sentence Is valid if and only If its negation Is
unsatisfiable.

Algorithms for either validity or satisfiability checking
are useful for logical inference.

If there are n propositional symbols in a sentence, then
simple validity checking must enumerate 2" rows

Satisfiability and Complexity of Inference

However, propositional satisfiability is the first problem to
be proven NP-complete, and therefore there is assumed to
be no polynomial-time algorithm.

Therefore, sound and complete logical inference In
propositional logic is intractable in general.

But many problems can be solved very quickly.

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, Av-A, A=>A (AAN(A=>B)=>B

Validity is connected to inference via the Deduction Theorem:
KB Eaif and only if (KB = q) is valid

A sentence is satisfiable if it is true in some model
e.g., Av B, C

A sentence is unsatisfiable if it is true in no models
e.g., AA-A

Rules of Inference

As an alternative to checking all rows of a truth table, one can
use rules of inference to draw conclusions.

A sequence of inference rule applications that leads to a desired
conclusion is called a logical proof.

Entailment: A |- B denotes that B can be derived by some
Inference procedure from the set of sentences A.

Inference rules can be verified by the truth-table method and
then used to construct sound proofs.

Finding a proof is simply a search problem with the inference
rules as operators and the conclusion as the goal.

Logical inference can be more efficient than truth table
construction.

Sample Rules of Inference

Entailments Examples:
Modus Ponens: {a = B, a} |- B

{a= B, o}

And Elimination: {a A B} |- o ; {a A B} |- B
And Introduction: {a, B} |-a A B

Or introduction: {o} |- a Vv 3

Double negation Elimination: {-~ -a} |- a
Implication Elimination: {a« = 8} |- ~a V 8
Unit resolution: {a v B3, 7B} |- «

Sample Proof

« |f John is not married, he is a bachelor. (=P = Q)

« John is not a bachelor. (-Q)
* Therefore, he is married. (P)

-P=0Q
=P Vv Q . Implication élimination ({a = B} |- ~a V B)
PvQ,-Q ; Double negation elimination ({~ -a} |- a)

P . Unit resolution({a v B, =B} |-)

Logical equivalence

Two sentences are logically equivalent iff true in same models: a = 3 iff

afFBandBFa

(aAB) = (BAa) commutativity of A
(aV B) = (BVa) commutativity of V
(aAB)A7y) = (A (B A7y)) associativity of A
(aVvB)Vy) = (aV(BVy)) associativity of V
—(—a) = a double-negation elimination
(@ =) = (-8 = —a) contraposition
(=) = (-« V () implication elimination
(¢ & B) = (¢ = B) AN (B = «)) biconditional elimination
(A f) = (maV—F) de Morgan
“(aV f) = (raA—3) de Morgan
(aA(BVY) = ((aANB)V(aNy)) distributivity of A over V
(aV(BAY) = (aVB)A(aVy)) distributivity of V over A

Rules of Inference

As an alternative to checking all rows of a truth table, one can
use rules of inference to draw conclusions.

A sequence of inference rule applications that leads to a desired
conclusion is called a logical proof.

Entailment: A |- B denotes that B can be derived by some
Inference procedure from the set of sentences A.

Inference rules can be verified by the truth-table method and
then used to construct sound proofs.

Finding a proof is simply a search problem with the inference
rules as operators and the conclusion as the goal.

Logical inference can be more efficient than truth table
construction.

Sample Rules of Inference

Entailments Examples:
Modus Ponens: {a = §, a} |- B

{a =B, aj

And Elimination: {a A B} |- o ; {a A B} |- B

And Introduction: {o, B} |- a A 8

Or introduction: {a} |- a Vv 8

Double negation Elimination: {= =a} |- «
Implication Elimination: {a« = B} |- "a Vv 8

Unit resolution: {a vV 8, 7B} |- a

Resolution: {a Vv B, "BV y} |-aVy. : Important

Sample Proof

« |f John is not married, he is a bachelor. (=P = Q)

« John is not a bachelor. (-Q)
* Therefore, he is married. (P)

-P=0Q
=P Vv Q . Implication élimination ({a = B} |- ~a V B)
PvQ,-Q ; Double negation elimination ({~ -a} |- a)

P . Unit resolution({a v B, =B} |-)

Proof methods
* Proof methods divide into (roughly) two kinds:

* Application of inference rules
« Legitimate (sound) generation of new sentences from old

« Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard

search algorithm
« Typically require transformation of sentences into a
normal form

Proof methods
* Proof methods divide into (roughly) two kinds:

* Model checking
 truth table enumeration (always exponential in n)

* improved backtracking, e.g., Davis--Putham-Logemann-
Loveland (DPLL)

* heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Application of inference rules
Conversion to CNF

1. Eliminate <, replacing a & 3 with (a = B)A(B = a).

2. Eliminate =, replacing a = (3 with ~av. 3.

3. Move - inwards using de Morgan's rules and double-negation:
=(avb)

—aA-b

4. Apply distributivity law (A over v) and flatten

Resolution example

The Resolution rule state that if PvQ and -~ PvR is true, then QVR will also be true.

Resolution in Propositional Logic

Premises:
P P
pPArqQ)=T —pVv-—oqVvr
(svi)=q e —s v q
o Yt
¢ e CNF

A resolution proof of r:

\/
\/
\/

Resolution in Propositional Logic

Convert all the propositions of KB to clause form (S).

Negate o and convert it to clause form. Add it to S.

3. Repeat until either a contradiction is found or no progress can

be made.
a. Select two clauses (a v —P) and (y v P).
b. Add the resolvent (a v) to S.

23

Reasoning with Horn Clauses

* Forward Chaining

» For each new piece of data, generate all new facts, until the
desired fact is generated

- Data-directed reasoning

« Backward Chaining

« To prove the goal, find a clause that contains the goal as its head,
and prove the body recursively

* Goal-directed reasoning

Forward Chaining

e Itis a strategy of an expert system to answer the question,
“What can happen next?”

e Data Driven
Here, the Inference Engine follows the chain of conditions and derivations
and finally deduces the outcome.
It considers all the facts and rules, and sorts them before concluding to a solution.

e This strategy is followed for working on conclusion,result,or effect.

e For example, prediction of share market status as an effect of changes in

Interest rates.

Forward Chaining

Fact 1

Decision 1

Fact 2

o

Fact 3 '
@ Decision 2
Fact 4

Decision 4

Forward Chaining

R1:
R2:
R3:
R4:
R5:

IFAand CTHEN E Given facts:

IFDand C THEN F Ais true

IFBand E THENF B is true

IF B THEN C What can be concluded?
IF FTHEN G

Cycle through rules, looking for rules whose premise

matches the working memory. Working memory
A, B
R4 fires: assert new fact C A, B, C
1 fires: assert new fact E A B C.E
3 fires: assert new fact F A B, C E
RS fires: assert new fact G A.B C. E

-

TIM

Forward Chaining

Database

Maich Fire
Enowledge Base
Y& D—» 2
X&B&KE—Y
A—»X

C—= L

L& M—N

Database

N
BoOEon

Match Fire
Enowledge Base
Y& D—»2
NX&B&LE—»Y
A —»X
C—»L
L&M—=N

Database

Meaich Fire

Y& [)—»2
NX&EB&EE—Y
A—»X

C—=L

L & M —» N

Database

I
noEon
121 12}

Match Fire

Cycle 3

Forward Chaining

A practical example will go as follows;

Tom is running (A)

If a person is running, he will sweat (A->B)

Therefore, Tom is sweating. (B)

Backward Chaining

e \With this strategy, an expert system finds out the answer to the question,
“Why this happened?”

e Goal Driven

e On the basis of what has already happened, the Inference Engine tries
to find out which conditions could have happened in the past for this
result.

e This strategy is followed for finding out cause or reason. For example,
diagnosis of blood cancer in humans.

Backward Chaining

Fact 1
@ Decision 1
Fact 2

Fact 3

AND

OR)E on

Fact 4

Fa=s 1

[Tsiabase

EN = | e &

b

¥ AL B i
AR S —e
A — -

L — i —= F
£ oL T —= N £ e —- N
S —ecmis F Sarfr-dreml’- N
Fas=s 4 Pa=s= = Fa=as &

ANTeatcda & e Ao fcla = rre Afeatcda e

F & I —i
GRS —=
A —-
£ —= I
£ oL A —=

¥ M IR —
=] A A E—e F
A —a- N
o —
A L N —-

Sardr-dlreoard - W Sardr-devari- ¥ Crorard' - &

Backward Chaining

A suitable sequence can be as follows:

The patient has a bacterial infection.

The patient is vomiting.

He/she is also experiencing diarrhea and severe stomach upset.
Therefore, the patient has typhoid (salmonella bacterial infection).

The MYCIN expert system uses the information collected from the patient to
recommend suitable treatment.

The recommended treatment corresponds to the identified bacterial infection. In
the case above, the system may recommend the use of ciprofloxacin.

Model Checking in Propositional Logic

DPLL Algorithm

* DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
* Early termination: stop if
* all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}

SAT solver can stop with partial models; no need to assign all variables (can
assign arbitrarily if a complete model is needed).

* any clause is falsified; e.g., (A v B) A (A v —C) is satisfied by {A=false, B=false}

Stop when a conflict is feund. Similar to backtracking algorithm for general CSPs.

Model Checking in Propositional Logic

DPLL Algorithm

e DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers
* Essentially a backtracking search over models with several tricks:
* Early termination

* Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

e E.g., Ais pure and positive in (A B) A (A v —C) A (C v —B) so set it to true

Claim: If a sentence has a model to satisfy it, then it has a model in which the
pure symbols are assigned values that make their literals true. Why?

W.l.0o.g., assume symbol A shows up in all clauses as A. Assume there is a
model satisfies the sentence with A=false. Then construct a new model
with A=true and everything else the same. Since there are no opposite sign
literals, making A=true that could make any clause be false.

DPLL Algorithm

* DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
* Early termination

* Pure symbols: if all occurrences of a symbolin as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

* E.g., Ais pure and positive in (A v B) A (A v —C) A (C v —B) so set it to true

Note: In determining the purity of a symbol, the algorithm can ignore clauses
that are already known to:be true in the model constructed so far

DPLL Algorithm

* DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
* Early termination
* Pure symbols

* Unit clauses: A unit clause is a clause in'which all literals but one are already
assigned false by the model (i.e., left with a single literal that can potentially
satisfy the clause). Set the remaining symbol of a unit clause to satisfy it.

* E.g., if A=false and the sentence (in CNF) has a clause (A v B), then set B true
Similar to Generalized-Forward Checking (nFCO) for general CSPs

* Unit propagation: Assigning values to the symbol in a unit clause can lead to
new unit clauses. Iteratively find unit clauses until no more remains.

Similar to Constraint Propagation for general CSPs

DPLL Algorithm

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

Early termination

P, value <FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value})

P, value €<FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols—P, modelU{P=value})

P & First(symbols)
rest €& Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}),

Essentially backtracki
DPLL(clauses, rest, modelU{P=false}))| - ¥ Do acking

DPLL Algorithm

Clauses:
—aVbVc
avevd
aVvcV-d
aV-cVd
aV -cV ﬁd
bV -acvd
—aVbV-c
—-aV-bVc

Assign a = true
Assign b = true
Find unit clause ma'V =b V ¢, so ¢ = true

Find unit clause =b V —c VvV d, sod = true

Local Search Algorithms for SAT

* WALK-SAT

* Randomly choose an unsatisfied clause
* With probability p, flip a randomly selected symbol in the clause
* Otherwise, flip a symbol in the clause that maximizes the # of satisfied clauses

WALKSAT

function WALKSAT(cl/auses, p, max_flips) returns a model or failure
inputs: clauses, a set of clauses
p, the probability of choosing to do a random walk, typically around 0.5
max_flips, number of flips allowed before giving up

model ¢ a random assignment of true/false to the symbols in clauses
fori=1to max flips do

if model satisfies clauses then return model/

clause <-a randomly selected clause from clauses that is false in model

with probability p flip the value in model of
a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the # of satisfied clauses
return failure

Local Search Algorithms for SAT

* WALK-SAT
* Randomly choose an unsatisfied clause
* With probability p, flip a randomly selected symbol in the clause
* Otherwise, flip a symbol in the clause that maximizes the # of satisfied clauses

* GSAT [Selman, Levesque, Mitchell AAAI-92]

* Similar to hill climbing but.with random restarts and allows for
downhill/sideway moves. if no better moves available

GSAT

function GSAT(sentence, max_restarts, max_climbs) returns a model or failure
fori=1to max_restarts do
model ¢ a random assignment of true/false to the symbols in clauses
for j = 1 to max_climbs do
if model satisfies sentence then return model

model < randomly choose one of the best successors
return failure

Avg. total flips

2000 30 variables, 215 3SAT clauses — Greediness is not essential as long

}ggg \//_/ as climbs and sideways moves are
800 preferred over downward moves.

400

max-climbs

Lol 200

Propositional Logic

Agents based on Propositional Logic

To enable the agent to deduce, to the extent possible, the state
of the world given its percept history. This requires writing down
a complete logical model of the effects of actions.

How the agent can keep track of the world efficiently without
going back into the percept history for each inference.

How the agent can use logical inference to construct plans that
are guaranteed to achieve its goals

The current state of the world

1.4 2.4 3.4 4,4
P?
1.3 2,3 33 4,3
— SG
B
1,2 2,2 3,2 4,2
v
P?
1,1 2,1 31 4,1
[A] B
ok v P?

Atomic proposition variable for Wumpus world:

* Let P;; be true if there is a Pit in the room [i, j].

* LetB;; be true if agent perceives breeze in i, j], (dead or
alive).

« LetW;; be true if there is wumpus in the square[i, .

*_ Let S be true if agent perceives stench in the square [i, j].

« LetV;; be true if that squareli, |] is visited.

* Let G;; be true if there is gold (and glitter) in the square [i, j].

* Let OK;; be true if the room is safe.

The current state of the world

Some Propositional Rules for the wumpus world:
(R1}) -511 = -Wu ™ -Wn*-Wnzn
(RZ) -Sz1 = - Wa M =War "= Wz ™ =W
(R3) =512 =+ -Wu " -~ Wiz = Wa =Wz

(R4) Sz = Wiz V. Wi V. W2z VWi

Making plans by propositional inference

Prove that Wumpus is in the room (1, 3)

We can prove that wumpus is in the room (1, 3) using propositional rules which we have derived for the wumpus

world and using inference rule.

Apply Modus Ponens with =S11 and R1:

=511 F=Wn =W M Wy

=511

=W =-Wpr-Wy

Apply And-Elimination Rule:

After applying And-elimination rule to = W,
A W, A= W, we will get three
statements:

Wy, 7 Wy, and =W,,.

Prove that Wumpus is in the room (1,

Apply Modus Ponens to -S,,, and R2:

3)

e Apply MP to S,, and R4:

-521 = - WarA- Wz A - Wi

-5n

N

/

= Wa A= Waz A= War

512 = WizVWiz VW2 v Wn

S12

~N

Wiz VWi VW22 VN

Wy, We will

e Apply And -Elimination rule:

Now again apply And-elimination rule to = Wy, A = W,, A-
get three

statements:

e Apply Unit resolutionon W3 vW,,vW,,

VW11 and - W11 .

Wiz VWi VW22 v Wi

- Wi

(W13 VW12 VWazs)

NI

Prove that Wumpus is in the room (1, 3)

Apply Unit resolutionon W,;vW,,VW,, and - W,, :

Wiz VWi VW2

LY

=Wz

N,

/

Wiz vWia

e Apply Unit Resolution on W,; v

W,,and-W,,:

Wiz VWi

N

Wis

Proved.

First order Logic

In propositional logic, we can only represent the facts, which are either true or false.
PL is not sufficient to represent the complex sentences or natural language
statements. The propositional logic has very limited expressive power. Consider the
following sentence, which we cannot represent using PL logic.

"Some humans are intelligent", or

"Sachin likes cricket."

To represent the above statements, PL logic is not sufficient, so we required some
more powerful logic, such as first-order logic.

Example

« Express “Socrates is a man” in
 Propositional logic
— MANSOCRATES - single proposition representing entire idea

« First-Order Predicate Calculus
— Man(SOCRATES) - predicate representing property of constant SOCRATES

First Order Logic

First-order logic is another way of knowledge representation in artificial intelligence. It is an
extension to propositional logic.
FOL is sufficiently expressive to represent the natural language statements in a concise way.
First-order logic is also known as Predicate logic or First-order predicate logic. First-order
logic is a powerful language that develops information about the objects in a more easy way
and can also express the relationship between those objects.
First-order logic (like natural language) does not only assume that the world contains facts like
propositional logic but also assumes the following things in the world:

» Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,

« Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation

such as: the sister of, brother of, has color, comes between
» Function: Father of, best friend, third inning of, end of,

Syntax for First-Order Logic

Sentence — AtomicSentence
| Sentence Connective Sentence
| Quantifier Variable Sentence

| ~Sentence
| (Sentence)
AtomicSentence — Predicate(Term, Term, ...)
| Term=Term
Term — Function(Term,Term,...)
| Constant
| Variable

Connective = Vv | A|=2| &
Quantifiers - 3 | v

Constant — A | John | Carl
Variable = x |y | z |...
Predicate — Brother | Owns | ...
Function — father-of | plus | ...

First-Order Logic

Term

Anything that identifies an object
Function(args)

Constant - function with 0 args

Atomic sentence

Predicate with term arguments
Enemies(WilyCoyote, RoadRunner)
Married(FatherOf(Alex), MotherOf(Alex))

Literals

atomic sentences and negated atomic sentences
Connectives

(&), (v), (->), (<=>), ()

Quantifiers \/
Universal Quantifier B
Existential Quantifier

First-Order Logic

Constant symbols (which refer to the "individuals" in the world) E.g.,
Mary, 3

Function symbols (mapping individuals to individuals) E.qg., father-
of(Mary) = John, color-of(Sky) = Blue

Predicate symbols (mapping from individuals to truth values) E.g.,
greater(5,3), green(Grass), color(Grass, Green)

Everyone likes someone: (Ax)(Ey)likes(X,y)

Someone is liked by everyone: (Ey)(Ax)likes(x,y)

Quantifiers in First-order logic:

« A quantifier is a language element which generates quantification, and
guantification specifies the quantity of specimen in the universe of discourse.
« These are the symbols that permit to determine or identify the range and scope of
the variable in the logical expression. There are two types of quantifier:
a. Universal Quantifier, (for all, everyone, everything)

b. Existential quantifier, (for some, at least one).

Properties of Quantifiers:

* In universal quantifier, ¥xVy is similar to Yyvx.
« In Existential quantifier, 3x3y is similar to Iy3x.

e 3XVy is not similar to Vyax.

First Order Logic

1. All birds fly.
vx bird(x) —fly(x).
1. Every man respects his parent.
Vx man(x) — respects (x, parent).
1. Some boys play cricket.
3ax boys(x) — play(x, cricket).
1. Not all students like both Mathematics and Science.
=V (x) [student(x) — like(x, Mathematics) A like(x, Science)].
Vvx) student(x) — smart(x) “All students are smart”
(3x) student(x) A smart(x) “There is a student who is smart”
Everyone likes someone: (Vx)3y) likes(x,y)
Every gardener likes the sun. ¥x gardener(x) — likes(x,Sun)

You can fool some of the people all of the time.3x Vt person(x) Atime(t) — can-fool(x,t)

o gk~ wh e

All purple mushrooms are poisonous. ¥Yx (mushroom(x) A purple(x)) — poisonous(x)

Use of Quantifiers

e Universal quantification naturally uses implication:
vx Whale(x) A Mammal(x)
Says that everything in the universe is both a whale and a
mammal.

e Existential quantification naturally uses conjunction:
Ix Owns(Mary,x) = Cat(x)
Says either there is something in the universe that Mary
does not own or there exists a cat in the universe.

e Vx Owns(Mary,x) = Cat(x)
Says all Mary owns is cats (i.e. everything Mary owns is a
cat). Also true if Mary owns nothing.

e Vx Cat(x) = Owns(Mary,x)
Says that Mary owns all the cats in the universe.
Also true if there are no cats in the universe.

Nesting Quantifiers

The order of quantifiers of the same type doesn’t matter

vxvy(Parent(x,y) A Male(y) = Son(y,x))

Ax3y(Loves(x,y) A Loves(y,X))
The order of mixed quantifiers does matter:
1. vx3y(Loves(x,y)) : Says everybody loves somebody, i.e. everyone has
someone whom they love.
2. Ayvx(Loves(x,y)): Says there is someone who is loved by everyone in the
universe.
3. Vyax(Loves(x,y)): Says everyone has someone who loves them.
4. 3Axvy(Loves(X,y)): Says there is someone who loves everyone in the
universe.

Variable Scope

e The scope of a variable is the sentence to which the quantifier
syntactically applies.

e As in a block structured programming language, a variable in a logical
expression refers to the closest quantifier within whose scope it appears.

3x (Cat(x) A ¥x(Black (x)))

The x in Black(x) is universally quantified Says cats exist and everything is
black

e In a well-formed formula (wff) all variables should be properly
Introduced:

e 3IxP(y) not well-formed

e A ground expression contains no variables.

Relation Between Quantifiers

Universal and existential guantification are logically related
to each other:
vx —Love(x,Saddam) & —3x Loves(x,Saddam)
vx Love(x,Princess-Di) & —3x —Loves(x,Princess-Di)
General Identities
VX P & -3x P
-VXP © 3Ix =P
VX P & =3x =P
X P & VX =P
VX P(X)AQ(X) & VXP(X) A ¥YXQ(X)
Ax P(X)VQ(X) & IAxP(X) Vv IXQ(X)

Equality

. Can include equality as a primitive predicate in the logic, or require it to be introduced and
axiomatized as the identity relation.
. Useful in representing certain types of knowledge:

1) 3Ix3y(Owns(Mary, x) A Cat(x) A Owns(Mary,y) A Cat(y) A =(X=Y))
. Mary owns two cats. Inequality needed to insure x and y
are distinct.

2) Vx 3y married(x, y) A Vz(married(X,z) = y=2z)

Everyone is married to exactly one person. Second conjunct is needed to guarantee there is only one unique
spouse.

Higher-Order Logic

 FOPC is called first-order because it allows quantifiers to range over objects
(terms) but not properties, relations, or functions applied to those objects.
« Second-order logic allows quantifiers to range over predicates and functions as
well:
VXVY[(x=y) e (VppX) < py))]: Says that two objects are equal if and only if
they have exactly the same properties.

vivgl (f=9) © (V xf(x) = g(x))]: Says that two functions are equal if and only if
they have the same value for all passible arguments.

Third-order would allow quantifying over predicates of predicates, etc.
For example, a second-order predicate would be Symmetric(p) stating that a binary
predicate p represents a symmetric relation.

Propositional vs. Predicate Logic

In propositional logic, each possible atomic fact requires a separate
unique propositional symbol.

If there are n people and m locations: representing the fact that
some person moved from one location to another requires nm?
separate symbols.

Predicate logic includes a richer ontology.

Ontology: A rigorous and exhaustive organization of some
knowledge domain that is.usually hierarchical and contains all the
relevant entities and their relations.

Predicate logic / Ontology

 Predicate logic requires.
* Objects (terms)
* Properties (unary predicates on terms)
 Relations (n-ary predicates on terms)
o (mappings from terms to other terms)
» Allows more flexible and compact representation of
knowledge.
* Move(X, Y, z) for person x moved from location y to z.

First-Order Logic: Terms and Predicates

Objects are represented by terms:

* Constants: Block1, John

* Function symbols: father-of, successor, plus

* An n-ary function maps a tuple of nterms to another

* term: father-of(John), succesor(0), plus(plus(1,1),2)

Terms are simply names for objects.

Logical functions are not procedural as In programming
languages.

They do not need to be defined, and do not really return a value.
Allows for the representation of an infinite number of terms.

First-Order Logic: Terms and Predicates

Propositions are represented by a predicate applied to
a tuple of terms.

A predicate represents a property.of or relation between
terms that can be true or false:

Brother(John, Fred), Left-of(Squarel, Square2)
GreaterThan (plus(1,1), plus(0,1))

First order Logic

In propositional logic, we can only represent the facts, which are either true or false.

PL is not sufficient to represent the complex sentences or natural language
statements.

The propositional logic has very limited expressive power. Consider the following
sentence, which we cannot represent using PL logic.

""Some humans are intelligent'', or

"'Sachin likes cricket."

To represent the above statements, PL logic is not sufficient, so we required some
more powerful logic, such as first-order logic.

Example

« Express “Socrates is a man” in
 Propositional logic
— MANSOCRATES - single proposition representing entire idea

« First-Order Predicate Calculus
— Man(SOCRATES) - predicate representing property of constant SOCRATES

First Order Logic

First-order logic is another way of knowledge representation in artificial intelligence. It is an
extension to propositional logic.
FOL is sufficiently expressive to represent the natural language statements in a concise way.
First-order logic is also known as Predicate logic or First-order predicate logic. First-order
logic is a powerful language that develops information about the objects in a more easy way
and can also express the relationship between those objects.
First-order logic (like natural language) does not only assume that the world contains facts
like propositional logic but also assumes the following things in the world:

« Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus

* Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation

such as: the sister of, brother of, has color, comes between
« Function: Father of, best friend, third inning of, end of

Syntax for First-Order Logic

Senience

AtomicSentence

Term

Connective
Quantifier
Constant
Vartable
FPredicale
Function

LD

AtomsicSentence

(Sentence Connective Sentence)
Quantifier Varzable, ... Sentence
— Sentence

Predicate(Term,...) | Term = Term
Function(Term, . ..)

Constant

Variable

=| A | V| <=

v 3

Al X1 | John |

al| x| s| :

Before | HasColor | Raining |
Mother | LefiLeg | ---

First-Order Logic

Term

Anything that identifies an object
Function(args)

Constant - function with 0 args

Atomic sentence

Predicate with term arguments
Enemies(WilyCoyote, RoadRunner)
Married(FatherOf(Alex), MotherOf(Alex))

Literals
atomic sentences and negated atomic sentences

Connectives

(&), (v), (>), (<=>), ()

Quantifiers
Universal Quantifier V
Existential Quantifier EI

Quantifiers in First-order logic:

« A quantifier is a language element which generates quantification, and
guantification specifies the quantity of specimen in the universe of discourse.
« These are the symbols that permit to determine or identify the range and scope of
the variable in the logical expression. There are two types of quantifier:
a. Universal Quantifier, (for all, everyone, everything)

b. Existential quantifier, (for some, at least one).

Properties of Quantifiers:

* In universal quantifier, ¥xVy is similar to Yyvx.
« In Existential quantifier, 3x3y is similar to Iy3x.

e 3XVy is not similar to Vyax.

First Order Logic

1. All birds fly.
vx bird(x) —fly(x).
1. Every man respects his parent.
Vx man(x) — respects (x, parent).
1. Some boys play cricket.
3ax boys(x) — play(x, cricket).
1. Not all students like both Mathematics and Science.
=V (x) [student(x) — like(x, Mathematics) A like(x, Science)].
Vvx) student(x) — smart(x) “All students are smart”
(3x) student(x) A smart(x) “There is a student who is smart”
Everyone likes someone: (Vx)3y) likes(x,y)
Every gardener likes the sun. ¥x gardener(x) — likes(x,Sun)

You can fool some of the people all of the time.3x Vt person(x) Atime(t) — can-fool(x,t)

o gk~ wh e

All purple mushrooms are poisonous. ¥Yx (mushroom(x) A purple(x)) — poisonous(x)

Use of Quantifiers

e Universal quantification naturally uses implication:
vx Whale(x) A Mammal(x)
Says that everything in the universe is both a whale and a mammal.

e EXxistential quantification naturally uses conjunction:
Ix Owns(Mary,x) = Cat(x)
Says either there Is something in the universe that Mary does not own or there
exists a cat in the universe.

e VX Owns(Mary,x) = Cat(x)
Says all Mary owns is cats (i.e. everything Mary owns is a cat). Also true if
Mary owns nothing.

e VX Cat(x) = Owns(Mary,x)
Says that Mary owns all the cats in the universe.Also true if there are no cats in
the universe.

Nesting Quantifiers

The order of quantifiers of the same type doesn’t matter

vxvy(Parent(x,y) A Male(y) = Son(y,x))

Ax3y(Loves(x,y) A Loves(y,X))
The order of mixed quantifiers does matter:
1. vx3y(Loves(x,y)) : Says everybody loves somebody, i.e. everyone has
someone whom they love.
2. Ayvx(Loves(x,y)): Says there is someone who is loved by everyone in the
universe.
3. Vyax(Loves(x,y)): Says everyone has someone who loves them.
4. 3Axvy(Loves(X,y)): Says there is someone who loves everyone in the
universe.

Relation Between Quantifiers

Universal and existential guantification are logically related
to each other:
vx —Love(x,Saddam) & —3x Loves(x,Saddam)
vx Love(x,Princess-Di) & —3x —Loves(x,Princess-Di)
General Identities
VX P & -3x P
-VXP © 3Ix =P
VX P & =3x =P
X P & VX =P
VX P(X)AQ(X) & VXP(X) A ¥YXQ(X)
Ax P(X)VQ(X) & IAxP(X) Vv IXQ(X)

Inference in First order logic

In First-Order Logic, inference is used to derive new facts or sentences from existing ones.

Substitution:

Substitution is a basic procedure that is applied to terms and formulations. It can be found in all first-order logic
inference systems. When there are quantifiers in FOL, the substitution becomes more complicated. When we write
F[a/x], we are referring to the substitution of a constant "a" for the variable "x."

Equality:

In First-Order Logic, atomic sentences are formed not only via the use of predicate and words, but also through the
application of equality. We can do this by using equality symbols, which indicate that the two terms relate to the
same thing.
Example: Brother (John) = Smith.

In the above example, the object referred by the Brother (John) is close to the object referred by Smith. The equality
symbol can be wused with negation to portray that two terms are not the same objects.

Example: —(x=y) which is equivalent to x #y.

Inference in First order logic

FOL inference rules for quantifier:

First-order logic has inference rules similar to propositional logic, therefore here are some
basic inference rules in FOL.:

e Universal Generalization - -~

i L TABLE 2 Fﬂltﬁ of Inferenee for Cuantified Statenments.
e Universal Instantiation P~ J—— —
e Existential Instantiation N e o

. .) . - I'I . b FiVErsal IMmELnnaiaE s
e Existential introduction)

b Tor am arbalrary ¢

. LUmiversnl gemeral frmliom
o WMl

Ao xh

Exislembal aasianiial ian
v b for eormne clEreEnt

b Tor some element

Exisential gomeraliimstion
AP xh -

Let P(x) be a predicate in a universe U. It will be helpful for Exercise to recall that
universal instantiation is the formal rule which tells us that

(Vz)P(z) = P(a) for any particular a € U
and that universal generalization is the formal rule which tells us that
P(a) for an arbitrary a € U = (Vz)P(z)
Further recall that existential instantiation is the formal rule which tells us that
(3x)P(x) = P(a) for some particular a € U

where we further require that a is a name that has not been used yet (otherwise, we risk
commiting the fallacy of equivocation). Finally, recall that existential generalization is
the formal rule which tells us that

P(a) for some particular a € U = (dz)P(z).

Inference in First order logic

Universal Generalization

e Universal generalization is a valid inference rule that states that if premise P(c) is
true for any arbitrary element c in the universe of discourse, we can arrive at the
conclusion x P. (x).

e It can be represented as P(c)
¥xP(x)

e If we want to prove that every element has a similar property, we can apply this rule.
e X must not be used as a free variable in this rule.

Let's represent, P(c): "A byte contains 8 bits", so "All bytes contain 8 bits."for V x P(x) , it
will also be true.

Inference in First order logic

Universal Instantiation:

A valid inference rule is universal instantiation, often known as universal elimination or Ul.

IF ""Every person like ice-cream™=> V¥x P(x) so we can infer that
""John likes ice-cream" => P(c)

Let's take a example,
"All kings who are greedy are Evil." So_let our knowledge base contains this detail as in the

form of FOL: vx king(x) A greedy (x) — Evil (x),
We can infer any of the following statements using Universal Instantiation from this

information:
e King(John) A Greedy (John) — Evil (John),

e King(Richard) A Greedy (Richard) — Evil (Richard),
e \We can infer any phrase by replacing a ground word for the variable, according to Ul
e King(Father(John)) A Greedy (Father(John)) — Evil (Father(John)),

Inference in First order logic

Existential Instantiation:

e Existential instantiation is also known as Existential Elimination, and it is a
legitimate first-order logic inference rule.
e It can only be used to replace the existential sentence once.

From the given sentence: 3x Crown(x) A OnHead(x, John),

So we can infer: Crown(K) A OnHead(K, John), as long as K does not appear in the
knowledge base.

e The above used K is a constant symbol, which is known as Skolem constant.
e The Existential instantiation is a special case of Skolemization process.

Inference in First order logic
Existential introduction

e An existential generalization is a valid-inference rule in first-order
logic that is also known as an existential introduction.
e This rule argues that if some element ¢ in the universe of

discourse has the property P, we can infer that something in the
universe has the attribute P.

e Example: Let's say that,
"Priyanka got good marks In English."
"Therefore, someone got good marks in English."

Inference in First order logic

FOL inference rules for quantifier:

Universal generalization is a valid inference rule that states that if premise P(c) is true for any
arbitrary element c in the universe of discourse, we can arrive at the conclusion x P. (x).

It can be represented as:
P{c)
Vx P(x)

e |f we want to prove that every element has a similar property, we can apply this rule.
e X must not be used as a free variable in this rule.

Example: Let's represent,
P(c): "A byte contains 8 bits", so "All bytes contain 8 bits."for v x P(x) , it will also be true.

Knowledge Engineering in First-order logic

The process of constructing a knowledge-base in first-order logic is called as
knowledge- engineering.
1. Identify the task:

c1

1 .—4.-4)))
2e B v e Does the circuit add properly?

/ e What will be the output of gate A2, if all the inputs are
high?
*e A2 o 52 e Which gate is connected to the first input terminal?
—e

™
"‘y e Does the circuit have feedback loops?

Knowledge Engineering in First-order logic

2. Assemble the relevant knowledge:

In the second step, we will assemble the relevant knowledge which is required for digital

circuits. So for digital circuits, we have the following required knowledge:

» Logic circuits are made up of wires and gates.

« Signal flows through wires to the input terminal of the gate, and each gate produces
the corresponding output which flows further.

« Inthis logic circuit, there are four types of gates used: AND, OR, XOR, and NOT.

« All these gates have one output terminal and two input terminals (except NOT gate, it

has one input terminal).

Knowledge Engineering in First-order logic

3. Decide on vocabulary:

The next step of the process is to select functions, predicate, and constants to
represent the circuits, terminals, signals, and gates.

The functionality of each gate is determined by its type, which is taken as constants
such as AND, OR, XOR, or NOT.

Circuits will be identified by a predicate: Circuit (C1).

For the terminal, we will use predicate: Terminal(x).

For gate input, we will use the function In(1, X1) for denoting the first input terminal of
the gate, and for output terminal we will use Out (1, X1).

The function Arity(c, i, j) is used to denote that circuit ¢ has i input, j output.

The connectivity between gates can be represented by predicate Connect(Out(1, X1),
In(1, X1)).

Knowledge Engineering in First-order logic
4. Encode general knowledge about the domain:

To encode the general knowledge about the logic circuit, we need some following
rules:

o If two terminals are connected then they have the same input signal, it can be

represented as:

Vv t1, t2 Terminal (t1) A Terminal (t2) A Connect (1, t2) — Signal (t1) = Signal
(2).

o Signal at every terminal will have either value 0 or 1, it will be represented as:

v t Terminal (t) —Signal (t) = 1 vSignal (t) = 0.

Knowledge Engineering in First-order logic
5. Encode a description of the problem instance

The given circuit C1, we can encode the problem instance in atomic sentences as
below:

Since in the circuit there are two XOR, two AND, and one OR gate so atomic
sentences for these gates will be

1. For XOR gate: Type(x1l)= XOR, Type(X2) = XOR

2. For AND gate: Type(Al) = AND, Type(A2)= AND

3. For OR gate: Type (O1) = OR.

Knowledge Engineering in First-order logic

6. Pose queries to the inference procedure and get answers

What should be the combination of input which would generate the first output of
circuit C1, as 0 and a second output to be 1?

1. 3i1,i2,i3 Signal (In(1, C1))=i1 A Signal(In(2, C1))=i2 A Signal (In(3,C1))=i3 A
Signal (Out(1, C1)) =0 A Signal (Out(2, C1))=1
7. Debug the knowledge base:

Now we will debug the knowledge base, and this is the last step of the complete
process. In this step, we will try to debug the issues of knowledge base.

	Slide 1: Knowledge Representation
	Slide 2: What is knowledge representation?
	Slide 3: Knowledge representation
	Slide 4: Types of Knowledge
	Slide 5: Types of Knowledge
	Slide 6: Types of Knowledge
	Slide 7: Relation between knowledge and intelligence:
	Slide 8: Logical Agents
	Slide 9: Knowledge Based Agents
	Slide 10: Knowledge Based Agents
	Slide 11: Generic Knowledge-Based Agent
	Slide 12: Generic Knowledge-Based Agent
	Slide 13: A simple knowledge-based agent
	Slide 14: A Wumpus World
	Slide 15: Wumpus World PEAS description
	Slide 16: Wumpus world characterization
	Slide 17: Wumpus World
	Slide 18: Exploring the Wumpus World
	Slide 19: Sample Run
	Slide 20: Sample Run
	Slide 21: Sample Run
	Slide 22: Sample Run
	Slide 23: Sample Run
	Slide 24: Sample Run
	Slide 25: Sample Run
	Slide 26: Sample Run
	Slide 27: Sample Run
	Slide 1: Logic + Reasoning + Inference
	Slide 2: Logic + Reasoning + Inference
	Slide 3: Knowledge Representation Languages and Inference
	Slide 4: Knowledge Representation Languages and Inference
	Slide 5: Propositional Logic Syntax
	Slide 6: Propositional Logic Semantics
	Slide 7: Validity and Inference
	Slide 8: Logical equivalence
	Slide 9: Models and Entailment
	Slide 10: Models and Entailment
	Slide 11: Validity and Inference
	Slide 12: Satisfiability and Complexity of Inference
	Slide 13: Satisfiability and Complexity of Inference
	Slide 14: Validity and satisfiability
	Slide 15: Rules of Inference
	Slide 16: Sample Rules of Inference
	Slide 17: Sample Proof
	Slide 1: Logical equivalence
	Slide 2: Rules of Inference
	Slide 3: Sample Rules of Inference
	Slide 4: Sample Proof
	Slide 5: Proof methods
	Slide 6: Proof methods
	Slide 7: Application of inference rules Conversion to CNF
	Slide 8: Resolution example
	Slide 9: Reasoning with Horn Clauses
	Slide 10: Forward Chaining
	Slide 11: Forward Chaining
	Slide 12: Forward Chaining
	Slide 13: Forward Chaining
	Slide 14: Forward Chaining
	Slide 15: Backward Chaining
	Slide 16: Backward Chaining
	Slide 17: Backward Chaining
	Slide 18: Backward Chaining
	Slide 19: Model Checking in Propositional Logic
	Slide 20: Model Checking in Propositional Logic
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 1: Propositional Logic
	Slide 2: Agents based on Propositional Logic
	Slide 3: The current state of the world
	Slide 4: The current state of the world
	Slide 5: Making plans by propositional inference
	Slide 6: Prove that Wumpus is in the room (1, 3)
	Slide 7: Prove that Wumpus is in the room (1, 3)
	Slide 8: First order Logic
	Slide 9: Example
	Slide 10: First Order Logic
	Slide 11: Syntax for First-Order Logic
	Slide 12: First-Order Logic
	Slide 13
	Slide 14: Quantifiers in First-order logic:
	Slide 15: First Order Logic
	Slide 16: Use of Quantifiers
	Slide 17: Nesting Quantifiers
	Slide 18: Variable Scope
	Slide 19: Relation Between Quantifiers
	Slide 20: Equality
	Slide 21: Higher-Order Logic
	Slide 22: Propositional vs. Predicate Logic
	Slide 23: Predicate logic / Ontology
	Slide 24: First-Order Logic: Terms and Predicates
	Slide 25: First-Order Logic: Terms and Predicates
	Slide 1: First order Logic
	Slide 2: Example
	Slide 3: First Order Logic
	Slide 4: Syntax for First-Order Logic
	Slide 5: First-Order Logic
	Slide 6: Quantifiers in First-order logic:
	Slide 7: First Order Logic
	Slide 8: Use of Quantifiers
	Slide 9: Nesting Quantifiers
	Slide 10: Relation Between Quantifiers
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1: Knowledge Engineering in First-order logic
	Slide 2: Knowledge Engineering in First-order logic
	Slide 3: Knowledge Engineering in First-order logic
	Slide 4: Knowledge Engineering in First-order logic
	Slide 5: Knowledge Engineering in First-order logic
	Slide 6: Knowledge Engineering in First-order logic

