
Knowledge Representation

What is knowledge representation?

● Humans are best at understanding, reasoning, and interpreting knowledge.

● Human knows things, which is knowledge and as per their knowledge they

perform various actions in the real world.

● But how machines do all these things comes under knowledge representation

and reasoning.

● Knowledge representation and reasoning (KR, KRR) is the part of Artificial

intelligence which concerned with AI agents thinking and how thinking

contributes to intelligent behavior of agents.

Knowledge representation

● It is responsible for representing information about the real

world so that a computer can understand and can utilize this

knowledge

● It is also a way which describes how we can represent

knowledge in artificial intelligence.

● Knowledge representation is not just storing data into some

database,but it also enables an intelligent machine to learn

from that knowledge and experiences so that it can behave

intelligently like a human.

Types of Knowledge

1. Declarative Knowledge:

● Declarative knowledge is to know about something.

● It includes concepts, facts, and objects.

● It is also called descriptive knowledge and expressed in declarative sentences.

● It is simpler than procedural language.

2. Procedural Knowledge

● It is also known as imperative knowledge.

● Procedural knowledge is a type of knowledge which is responsible for knowing how to

do something.

● It can be directly applied to any task.

● It includes rules, strategies, procedures, agendas, etc.

● Procedural knowledge depends on the task on which it can be applied.

Types of Knowledge

3. Meta-knowledge:

● Knowledge about the other types of knowledge is called Meta-knowledge.

● Some examples of meta knowledge include planning, learning.

4. Heuristic knowledge:

● Heuristic knowledge is representing knowledge of some experts in a field or

subject.

● Heuristic knowledge is rules of thumb based on previous experiences, awareness

of approaches.

Types of Knowledge

5. Structural knowledge:

● Structural knowledge is basic knowledge to problem-solving.

● It describes relationships between various concepts such as kind of, part of, and

grouping of something.

● It describes the relationship that exists between concepts or objects.

Relation between knowledge and intelligence:

Knowledge plays an important

role in demonstrating intelligent

behavior in AI agents.

An agent is only able to

accurately act on some input

when he has some knowledge

or experience about that input.

Logical Agents

• Knowledge-based agents – agents that have an explicit

representation of knowledge that can be reasoned with.

• These agents can manipulate this knowledge to infer new things

at the “knowledge level”

Knowledge Based Agents
• Both TELL and ASK operations may involve inference.

• Inference for deriving new sentences from old.

• Job of inference: Inference must obey the requirement that

when one ASKs a question of the knowledge base, the

answer should follow from what has been told (or TELLed)

to the knowledge base previously.

• Inference process should not make things up as it goes along.

Knowledge Based Agents
• Like all agents, it takes a percept as input and returns an action.

• The agent maintains a knowledge base, KB, which may initially contain

some background knowledge

• Each time the agent program is called, it does three things.

1. First, it TELLs the knowledge base what it perceives / input.

2. Second, it ASKs the knowledge base what action it should perform.

In the process of answering this query, extensive reasoning may be done

about the current state of the world, about the outcomes of possible

action sequences, and so on.

3. Third, the agent program TELLs the knowledge base which action

was chosen, and the agent executes the action.

Generic Knowledge-Based Agent

function KB-AGENT(percept) returns an action

persistent: KB, a knowledge base

t , a counter, initially 0, indicating time (t is an time counter with initial value 0)

TELL(KB,MAKE-PERCEPT-SENTENCE(percept , t))

action ←ASK(KB,MAKE-ACTION-QUERY(t))

TELL(KB,MAKE-ACTION-SENTENCE(action, t))

t ←t + 1

return action

• Given a percept, the agent adds the percept to its knowledge base, asks the knowledge

base for the best action, and tells the knowledge base that it has in fact taken that action.

Generic Knowledge-Based Agent

• The details of the representation language are hidden inside three functions.

• MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent

perceived the given percept (Information) at the given time.

• MAKE-ACTION-QUERY constructs a sentence that asks what action should

be done at the current time.

• MAKE-ACTION-SENTENCE constructs a sentence asserting that the

chosen action was executed.

• The details of the inference mechanisms are hidden inside TELL and ASK.

A simple knowledge-based agent

• The agent must be able to:

• Represent states, actions, etc.

• Incorporate new percepts

• Update internal representations of the world

• Deduce hidden properties of the world

• Deduce appropriate actions

A Wumpus World

Wumpus World PEAS description

● Performance measure

○ gold +1000, death -1000

○ -1 per step, -10 for using the arrow

● Environment: 4 x 4 grid of rooms

○ Squares adjacent to wumpus are smelly

○ Squares adjacent to pit are breezy

○ Glitter iff gold is in the same square

○ Shooting kills wumpus if you are facing it

○ Shooting uses up the only arrow

○ Grabbing picks up gold if in same square

○ Releasing drops the gold in same square

● Sensors: Stench, Breeze, Glitter, Bump, Scream (shot Wumpus)

● Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

• Fully Observable No – only local perception

• Deterministic Yes – outcomes exactly specified

• Episodic No – sequential at the level of actions

• Static Yes – Wumpus and Pits do not move

• Discrete Yes

• Single-agent? Multi – (wumpus, eventually other agents)

Wumpus World

● Percepts given to the agent

1. Stench

2. Breeze

3. Glitter

4. Bumb (ran into a wall)

5. Scream (wumpus has been hit by arrow)

● Principle Difficulty: agent is initially ignorant of the

configuration of the environment – going to have to reason

to figure out where the gold is without getting killed!

Exploring the Wumpus World

Initial situation:

Agent in 1,1 and percept is

[None, None, None, None,

None]

From this the agent can infer

the neighboring squares are

safe (otherwise there would

be a breeze or a stench)

Sample Run

Sample Run

Sample Run

Sample Run

Sample Run

Sample Run

Sample Run

Sample Run

Sample Run

Now we look at

• How to represent facts / beliefs

✔ “There is a pit in (2,2) or (3,1)”

• How to make inferences

✔ “No breeze in (1,2), so pit in

(3,1)”

Logic + Reasoning + Inference

• The knowledge bases consist of sentences.

• These sentences are expressed according to the syntax of the
representation language

• Example, “x + y = 4” is a well-formed sentence, whereas “x4y+ =”
is not.

• A logic must also define the semantics or meaning of sentences.

• The semantics defines the truth of each sentence with respect to
each possible world.

• For example, the semantics for arithmetic specifies that the sentence
“x + y =4” is true in a world where x is 2 and y is 2, but false in a
world where x is 1 and y is 1.

• In standard logics, every sentence must be either true or false only.

Logic + Reasoning + Inference
• Sentence: Individual piece of knowledge

- English sentence forms one piece of

knowledge in English language

- Statement in C++ forms one piece of

knowledge in C++ programming language

• Syntax: Form used to represent sentences

- Syntax of C indicates legal combinations

of symbols

- a = 2 + 3; is legal

- a = + 2 3 is not legal

- Syntax alone does not indicate meaning

• Semantics: Mapping from sentences to facts

in the world

- They define the truth of a sentence in a

“possible world”

- Add the values of 2 and 3, store them in the

memory location indicated by variable a

• In the language of arithmetic:

x + 2 >= y is a sentence

x2 + y > is not a sentence

x + 2 >= y is true in all worlds where

the number x + 2 is no less than the number y

x + 2 >= y is true in a world where

x = 7, y = 1

x + 2 >= y is false in a world where

x = 0, y = 6

Knowledge Representation Languages and Inference

• A KR language is specified by

• Syntax: The atomic symbols used in the language and

how they can be composed to formal legal sentences.

• Semantics: What fact about the world is represented by

a sentence in the language, which determines whether it is true or

false.

Knowledge Representation Languages and Inference

• Logical inference (deduction) derives new sentences in the language

from existing ones.

Socrates is a man.

All men are mortal.

Socrates is mortal.

Proper inference should only derive sound conclusions. (ones that are true assuming

the premises are true)

Propositional Logic Syntax
• Logical constants: True, False

• Propositional symbols: P, Q, etc. representing specific facts about the world.

• Constants and symbols are atomic, other sentences are complex.

• If S is a sentence, then (S) is a sentence

• If S and R are sentences then so are:

S ∧ R: conjunction, S and R are conjuncts

S ∨ R: disjunction, S and R are disjuncts

S ⇒ R: implication, S is a premise or antecedent,

R is the conclusion or consequent, also known as

a rule or if-then statement

• S ⇔ R: equivalence (biconditional implication)

• ¬S: negation

• A literal is an atomic sentence or its negation (P, ¬S)

• Precedence of operators: ¬, ∧, ∨,⇒, ⇔

Propositional Logic Semantics

• True and False indicate truth and falsity in

the world.

• A proposition denotes whatever fixed

statement about the world you want which

could be true or false.

• The semantics of complex sentences are

derived from the semantics of their parts

according to the following truth table.

Validity and Inference

• An interpretation is an assignment of True or False

to each atomic proposition.

• A sentence that is true under any interpretation is

valid (also called a tautology or analytic sentence).

• Validity can be checked by exhaustively exploring

each possible interpretation in a truth table:

Logical equivalence
• Two sentences are logically equivalent iff true in same models: α ≡ ß iff

α╞ β and β╞ α

Models and Entailment

• Entailment: the relation between a

sentence and another sentence that

follows from it and see how this leads

to a simple.

• Any interpretation in which a sentence

is true is called a model of the

sentence. (Venn Diagram)

Models and Entailment

• A sentence A entails a sentence B, (A |= B) if every model

of A is also a model of B. In this case, if A is true then B

must be true.

• Correct logical inference is characterized by entailment, we

want to be able to infer whether a statement S follows from a

knowledge base:

KB |= S

or

(KB -> S) is valid

Validity and Inference
• Inference can be performed by validity checking.

• If one has a set of sentences: {S1,... Sn} defining

one’s background knowledge, and one want to

know whether a conclusion C logically follows,

construct the sentence:

S1 ∧ S2 ∧... ∧ Sn ⇒ C

and check whether it is valid.

How many rows do we need to check?

Satisfiability and Complexity of Inference

● A sentence is satisfiable if it is true under some

interpretation.

● Means it has a model, otherwise the sentence is

unsatisfiable.

● A sentence is valid if and only if its negation is

unsatisfiable.

● Algorithms for either validity or satisfiability checking

are useful for logical inference.

● If there are n propositional symbols in a sentence, then

simple validity checking must enumerate 2n rows

Satisfiability and Complexity of Inference

• However, propositional satisfiability is the first problem to

be proven NP-complete, and therefore there is assumed to

be no polynomial-time algorithm.

• Therefore, sound and complete logical inference in

propositional logic is intractable in general.

• But many problems can be solved very quickly.

Validity and satisfiability

• A sentence is valid if it is true in all models,
e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

• Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

• A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

• A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Rules of Inference

• As an alternative to checking all rows of a truth table, one can

use rules of inference to draw conclusions.

• A sequence of inference rule applications that leads to a desired

conclusion is called a logical proof.

• Entailment: A |- B denotes that B can be derived by some

inference procedure from the set of sentences A.

• Inference rules can be verified by the truth-table method and

then used to construct sound proofs.

• Finding a proof is simply a search problem with the inference

rules as operators and the conclusion as the goal.

• Logical inference can be more efficient than truth table

construction.

Sample Rules of Inference

Entailments Examples:

• Modus Ponens: {α⇒ β, α} |− β
{α⇒ β, α}

β

• And Elimination: {α ∧ β} |- α ; {α ∧ β} |− β
• And Introduction: {α, Β} |− α ∧ β
• Or introduction: {α} |− α ∨ β
• Double negation Elimination: {¬ ¬α} |− α
• Implication Elimination: {α⇒ β} |− ¬α ∨ β
• Unit resolution: {α ∨ β, ¬β} |− α
• Resolution: {α ∨ β, ¬β ∨ γ} |− α ∨ γ. : Important

Sample Proof

• If John is not married, he is a bachelor. (¬P ⇒ Q)

• John is not a bachelor. (¬Q)

• Therefore, he is married. (P)

¬P ⇒ Q

¬¬P ∨ Q ; Implication élimination ({α ⇒ β} |− ¬α ∨ β)

P ∨ Q, ¬Q ; Double negation elimination ({¬ ¬α} |− α)

P : Unit resolution({α ∨ β, ¬β} |− α)

Logical equivalence
• Two sentences are logically equivalent iff true in same models: α ≡ ß iff

α╞ β and β╞ α

Rules of Inference
• As an alternative to checking all rows of a truth table, one can

use rules of inference to draw conclusions.

• A sequence of inference rule applications that leads to a desired

conclusion is called a logical proof.

• Entailment: A |- B denotes that B can be derived by some

inference procedure from the set of sentences A.

• Inference rules can be verified by the truth-table method and

then used to construct sound proofs.

• Finding a proof is simply a search problem with the inference

rules as operators and the conclusion as the goal.

• Logical inference can be more efficient than truth table

construction.

Sample Rules of Inference
Entailments Examples:

• Modus Ponens: {α ⇒ β, α} |− β
{α⇒ β, α}

β
• And Elimination: {α ∧ β} |- α ; {α ∧ β} |− β
• And Introduction: {α, Β} |− α ∧ β
• Or introduction: {α} |− α ∨ β
• Double negation Elimination: {¬ ¬α} |− α
• Implication Elimination: {α⇒ β} |− ¬α ∨ β
• Unit resolution: {α ∨ β, ¬β} |− α
• Resolution: {α ∨ β, ¬β ∨ γ} |− α ∨ γ. : Important

Sample Proof
• If John is not married, he is a bachelor. (¬P ⇒ Q)

• John is not a bachelor. (¬Q)

• Therefore, he is married. (P)

¬P ⇒ Q

¬¬P ∨ Q ; Implication élimination ({α ⇒ β} |− ¬α ∨ β)

P ∨ Q, ¬Q ; Double negation elimination ({¬ ¬α} |− α)

P : Unit resolution({α ∨ β, ¬β} |− α)

Proof methods
• Proof methods divide into (roughly) two kinds:

• Application of inference rules
• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard

search algorithm

• Typically require transformation of sentences into a
normal form

Proof methods

• Proof methods divide into (roughly) two kinds:

• Model checking
• truth table enumeration (always exponential in n)

• improved backtracking, e.g., Davis--Putnam-Logemann-
Loveland (DPLL)

• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

Application of inference rules

Conversion to CNF

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.

3. Move ¬ inwards using de Morgan's rules and double-negation:

¬(avb)

¬a∧¬b

4. Apply distributivity law (∧ over ∨) and flatten

Resolution example

The Resolution rule state that if P∨Q and ¬ PvR is true, then Q∨R will also be true.

Reasoning with Horn Clauses

• Forward Chaining
• For each new piece of data, generate all new facts, until the

desired fact is generated

• Data-directed reasoning

• Backward Chaining
• To prove the goal, find a clause that contains the goal as its head,

and prove the body recursively

• Goal-directed reasoning

Forward Chaining

● It is a strategy of an expert system to answer the question,

“What can happen next?”

● Data Driven

Here, the Inference Engine follows the chain of conditions and derivations

and finally deduces the outcome.

It considers all the facts and rules, and sorts them before concluding to a solution.

● This strategy is followed for working on conclusion,result,or effect.

● For example, prediction of share market status as an effect of changes in

interest rates.

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

A practical example will go as follows;

Tom is running (A)

If a person is running, he will sweat (A->B)

Therefore, Tom is sweating. (B)

Backward Chaining

● With this strategy, an expert system finds out the answer to the question,

“Why this happened?”

● Goal Driven

● On the basis of what has already happened, the Inference Engine tries

to find out which conditions could have happened in the past for this

result.

● This strategy is followed for finding out cause or reason. For example,

diagnosis of blood cancer in humans.

Backward Chaining

Backward Chaining

Backward Chaining

A suitable sequence can be as follows:

● The patient has a bacterial infection.

● The patient is vomiting.

● He/she is also experiencing diarrhea and severe stomach upset.

● Therefore, the patient has typhoid (salmonella bacterial infection).

The MYCIN expert system uses the information collected from the patient to

recommend suitable treatment.

The recommended treatment corresponds to the identified bacterial infection. In

the case above, the system may recommend the use of ciprofloxacin.

Model Checking in Propositional Logic

Model Checking in Propositional Logic

Propositional Logic

Agents based on Propositional Logic

• To enable the agent to deduce, to the extent possible, the state

of the world given its percept history. This requires writing down

a complete logical model of the effects of actions.

• How the agent can keep track of the world efficiently without

going back into the percept history for each inference.

• How the agent can use logical inference to construct plans that

are guaranteed to achieve its goals

The current state of the world

Atomic proposition variable for Wumpus world:

• Let Pi,j be true if there is a Pit in the room [i, j].

• Let Bi,j be true if agent perceives breeze in [i, j], (dead or

alive).

• Let Wi,j be true if there is wumpus in the square[i, j].

• Let Si,j be true if agent perceives stench in the square [i, j].

• Let Vi,j be true if that square[i, j] is visited.

• Let Gi,j be true if there is gold (and glitter) in the square [i, j].

• Let OKi,j be true if the room is safe.

The current state of the world

Some Propositional Rules for the wumpus world:

Making plans by propositional inference

Prove that Wumpus is in the room (1, 3)

We can prove that wumpus is in the room (1, 3) using propositional rules which we have derived for the wumpus

world and using inference rule.

Apply Modus Ponens with ¬S11 and R1:
Apply And-Elimination Rule:

After applying And-elimination rule to ¬ W11

∧ ¬ W12 ∧ ¬ W21, we will get three

statements:

¬ W11, ¬ W12, and ¬W21.

Prove that Wumpus is in the room (1, 3)

• Apply Modus Ponens to ¬S21, and R2:

● Apply And -Elimination rule:

Now again apply And-elimination rule to ¬ W21 ∧ ¬ W22 ∧¬

W31, We will get three statements:

¬ W21, ¬ W22, and ¬ W31.

● Apply MP to S12 and R4:

● Apply Unit resolution on W13 ∨ W12 ∨ W22

∨W11 and ¬ W11 :

Prove that Wumpus is in the room (1, 3)

• Apply Unit resolution on W13 ∨ W12 ∨ W22 and ¬ W22 :

● Apply Unit Resolution on W13 ∨

W12 and ¬ W12 :

First order Logic

In propositional logic, we can only represent the facts, which are either true or false.

PL is not sufficient to represent the complex sentences or natural language

statements. The propositional logic has very limited expressive power. Consider the

following sentence, which we cannot represent using PL logic.

"Some humans are intelligent", or

"Sachin likes cricket."

To represent the above statements, PL logic is not sufficient, so we required some

more powerful logic, such as first-order logic.

Example

• Express “Socrates is a man” in

• Propositional logic

– MANSOCRATES - single proposition representing entire idea

• First-Order Predicate Calculus

– Man(SOCRATES) - predicate representing property of constant SOCRATES

First Order Logic

• First-order logic is another way of knowledge representation in artificial intelligence. It is an

extension to propositional logic.

• FOL is sufficiently expressive to represent the natural language statements in a concise way.

• First-order logic is also known as Predicate logic or First-order predicate logic. First-order

logic is a powerful language that develops information about the objects in a more easy way

and can also express the relationship between those objects.

• First-order logic (like natural language) does not only assume that the world contains facts like

propositional logic but also assumes the following things in the world:

• Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,

• Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation

such as: the sister of, brother of, has color, comes between

• Function: Father of, best friend, third inning of, end of,

Syntax for First-Order Logic

Sentence → AtomicSentence

| Sentence Connective Sentence

| Quantifier Variable Sentence

| ¬Sentence

| (Sentence)

AtomicSentence → Predicate(Term, Term, ...)

| Term=Term

Term → Function(Term,Term,...)
| Constant

| Variable

Connective → ∨ | ∧ | ⇒ | ⇔
Quantifiers → ∃ | ∀
Constant → A | John | Car1

Variable → x | y | z |...

Predicate → Brother | Owns | ...
Function → father-of | plus | ...

First-Order Logic

• Term

Anything that identifies an object

Function(args)

Constant - function with 0 args

• Atomic sentence

Predicate with term arguments

Enemies(WilyCoyote, RoadRunner)

Married(FatherOf(Alex), MotherOf(Alex))

• Literals

atomic sentences and negated atomic sentences

• Connectives

(&), (v), (->), (<=>), (~)

Quantifiers

Universal Quantifier

Existential Quantifier

● Constant symbols (which refer to the "individuals" in the world) E.g.,

Mary, 3

● Function symbols (mapping individuals to individuals) E.g., father-

of(Mary) = John, color-of(Sky) = Blue

● Predicate symbols (mapping from individuals to truth values) E.g.,

greater(5,3), green(Grass), color(Grass, Green)

● Everyone likes someone: (Ax)(Ey)likes(x,y)

● Someone is liked by everyone: (Ey)(Ax)likes(x,y)

First-Order Logic

Quantifiers in First-order logic:

• A quantifier is a language element which generates quantification, and

quantification specifies the quantity of specimen in the universe of discourse.

• These are the symbols that permit to determine or identify the range and scope of

the variable in the logical expression. There are two types of quantifier:

a. Universal Quantifier, (for all, everyone, everything)

b. Existential quantifier, (for some, at least one).

Properties of Quantifiers:

• In universal quantifier, ∀x∀y is similar to ∀y∀x.

• In Existential quantifier, ∃x∃y is similar to ∃y∃x.

• ∃x∀y is not similar to ∀y∃x.

First Order Logic

1. All birds fly.

∀x bird(x) →fly(x).

1. Every man respects his parent.

∀x man(x) → respects (x, parent).

1. Some boys play cricket.

∃x boys(x) → play(x, cricket).

1. Not all students like both Mathematics and Science.

¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

1. ∀x) student(x) → smart(x) “All students are smart”

2. (∃x) student(x) ∧ smart(x) “There is a student who is smart”

3. Everyone likes someone: (∀x)(∃y) likes(x,y)

4. Every gardener likes the sun. ∀x gardener(x) → likes(x,Sun)

5. You can fool some of the people all of the time.∃x ∀t person(x) ∧time(t) → can-fool(x,t)

6. All purple mushrooms are poisonous. ∀x (mushroom(x) ∧ purple(x)) → poisonous(x)

Use of Quantifiers

● Universal quantification naturally uses implication:

∀x Whale(x) ∧ Mammal(x)

Says that everything in the universe is both a whale and a

mammal.

● Existential quantification naturally uses conjunction:

∃x Owns(Mary,x) ⇒ Cat(x)

Says either there is something in the universe that Mary

does not own or there exists a cat in the universe.

● ∀x Owns(Mary,x) ⇒ Cat(x)

Says all Mary owns is cats (i.e. everything Mary owns is a

cat). Also true if Mary owns nothing.

● ∀x Cat(x) ⇒ Owns(Mary,x)

Says that Mary owns all the cats in the universe.

Also true if there are no cats in the universe.

Nesting Quantifiers

• The order of quantifiers of the same type doesn’t matter

∀x∀y(Parent(x,y) ∧ Male(y) ⇒ Son(y,x))

∃x∃y(Loves(x,y) ∧ Loves(y,x))

• The order of mixed quantifiers does matter:

1. ∀x∃y(Loves(x,y)) : Says everybody loves somebody, i.e. everyone has

someone whom they love.

2. ∃y∀x(Loves(x,y)): Says there is someone who is loved by everyone in the

universe.

3. ∀y∃x(Loves(x,y)): Says everyone has someone who loves them.

4. ∃x∀y(Loves(x,y)): Says there is someone who loves everyone in the

universe.

Variable Scope

● The scope of a variable is the sentence to which the quantifier

syntactically applies.

● As in a block structured programming language, a variable in a logical

expression refers to the closest quantifier within whose scope it appears.

∃x (Cat(x) ∧ ∀x(Black (x)))

The x in Black(x) is universally quantified Says cats exist and everything is

black

● In a well-formed formula (wff) all variables should be properly

introduced:

● ∃xP(y) not well-formed

● A ground expression contains no variables.

Relation Between Quantifiers

• Universal and existential quantification are logically related

• to each other:

• ∀x ¬Love(x,Saddam) ⇔ ¬∃x Loves(x,Saddam)

• ∀x Love(x,Princess-Di) ⇔ ¬∃x ¬Loves(x,Princess-Di)

• General Identities

• ∀x ¬P ⇔ ¬∃x P

• ¬∀x P ⇔ ∃x ¬P

• ∀x P ⇔ ¬∃x ¬P

• ∃x P ⇔ ¬∀x ¬P

• ∀x P(x)∧Q(x) ⇔ ∀xP(x) ∧ ∀xQ(x)

• ∃x P(x)∨Q(x) ⇔ ∃xP(x) ∨ ∃xQ(x)

Equality
• Can include equality as a primitive predicate in the logic, or require it to be introduced and

axiomatized as the identity relation.

• Useful in representing certain types of knowledge:

1) ∃x∃y(Owns(Mary, x) ∧ Cat(x) ∧ Owns(Mary,y) ∧ Cat(y) ∧ ¬(x=y))

• Mary owns two cats. Inequality needed to insure x and y

are distinct.

2) ∀x ∃y married(x, y) ∧ ∀z(married(x,z) ⇒ y=z)

Everyone is married to exactly one person. Second conjunct is needed to guarantee there is only one unique

spouse.

Higher-Order Logic

• FOPC is called first-order because it allows quantifiers to range over objects

(terms) but not properties, relations, or functions applied to those objects.

• Second-order logic allows quantifiers to range over predicates and functions as

well:

∀ x ∀ y [(x=y) ⇔ (∀ p p(x) ⇔ p(y))]: Says that two objects are equal if and only if

they have exactly the same properties.

∀ f ∀ g [(f=g) ⇔ (∀ x f(x) = g(x))]: Says that two functions are equal if and only if

they have the same value for all possible arguments.

Third-order would allow quantifying over predicates of predicates, etc.

For example, a second-order predicate would be Symmetric(p) stating that a binary

predicate p represents a symmetric relation.

Propositional vs. Predicate Logic

• In propositional logic, each possible atomic fact requires a separate

unique propositional symbol.

• If there are n people and m locations: representing the fact that

some person moved from one location to another requires nm2

separate symbols.

• Predicate logic includes a richer ontology.

• Ontology: A rigorous and exhaustive organization of some

knowledge domain that is usually hierarchical and contains all the

relevant entities and their relations.

Predicate logic / Ontology

• Predicate logic requires.

• Objects (terms)

• Properties (unary predicates on terms)

• Relations (n-ary predicates on terms)

• Functions (mappings from terms to other terms)

• Allows more flexible and compact representation of

knowledge.

• Move(x, y, z) for person x moved from location y to z.

First-Order Logic: Terms and Predicates

• Objects are represented by terms:
• Constants: Block1, John
• Function symbols: father-of, successor, plus
• An n-ary function maps a tuple of n terms to another
• term: father-of(John), succesor(0), plus(plus(1,1),2)

• Terms are simply names for objects.
• Logical functions are not procedural as in programming

languages.
• They do not need to be defined, and do not really return a value.
• Allows for the representation of an infinite number of terms.

First-Order Logic: Terms and Predicates

• Propositions are represented by a predicate applied to

a tuple of terms.

• A predicate represents a property of or relation between

terms that can be true or false:

• Brother(John, Fred), Left-of(Square1, Square2)

• GreaterThan (plus(1,1), plus(0,1))

First order Logic

In propositional logic, we can only represent the facts, which are either true or false.

PL is not sufficient to represent the complex sentences or natural language

statements.

The propositional logic has very limited expressive power. Consider the following

sentence, which we cannot represent using PL logic.

"Some humans are intelligent", or

"Sachin likes cricket."

To represent the above statements, PL logic is not sufficient, so we required some

more powerful logic, such as first-order logic.

Example

• Express “Socrates is a man” in

• Propositional logic

– MANSOCRATES - single proposition representing entire idea

• First-Order Predicate Calculus

– Man(SOCRATES) - predicate representing property of constant SOCRATES

First Order Logic

• First-order logic is another way of knowledge representation in artificial intelligence. It is an

extension to propositional logic.

• FOL is sufficiently expressive to represent the natural language statements in a concise way.

• First-order logic is also known as Predicate logic or First-order predicate logic. First-order

logic is a powerful language that develops information about the objects in a more easy way

and can also express the relationship between those objects.

• First-order logic (like natural language) does not only assume that the world contains facts

like propositional logic but also assumes the following things in the world:

• Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus

• Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation

such as: the sister of, brother of, has color, comes between

• Function: Father of, best friend, third inning of, end of

Syntax for First-Order Logic

First-Order Logic

• Term

Anything that identifies an object

Function(args)

Constant - function with 0 args

• Atomic sentence

Predicate with term arguments

Enemies(WilyCoyote, RoadRunner)

Married(FatherOf(Alex), MotherOf(Alex))

• Literals

atomic sentences and negated atomic sentences

• Connectives

(&), (v), (->), (<=>), (~)

• Quantifiers

Universal Quantifier

Existential Quantifier

Quantifiers in First-order logic:

• A quantifier is a language element which generates quantification, and

quantification specifies the quantity of specimen in the universe of discourse.

• These are the symbols that permit to determine or identify the range and scope of

the variable in the logical expression. There are two types of quantifier:

a. Universal Quantifier, (for all, everyone, everything)

b. Existential quantifier, (for some, at least one).

Properties of Quantifiers:

• In universal quantifier, ∀x∀y is similar to ∀y∀x.

• In Existential quantifier, ∃x∃y is similar to ∃y∃x.

• ∃x∀y is not similar to ∀y∃x.

First Order Logic

1. All birds fly.

∀x bird(x) →fly(x).

1. Every man respects his parent.

∀x man(x) → respects (x, parent).

1. Some boys play cricket.

∃x boys(x) → play(x, cricket).

1. Not all students like both Mathematics and Science.

¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

1. ∀x) student(x) → smart(x) “All students are smart”

2. (∃x) student(x) ∧ smart(x) “There is a student who is smart”

3. Everyone likes someone: (∀x)(∃y) likes(x,y)

4. Every gardener likes the sun. ∀x gardener(x) → likes(x,Sun)

5. You can fool some of the people all of the time.∃x ∀t person(x) ∧time(t) → can-fool(x,t)

6. All purple mushrooms are poisonous. ∀x (mushroom(x) ∧ purple(x)) → poisonous(x)

Use of Quantifiers

● Universal quantification naturally uses implication:

∀x Whale(x) ∧ Mammal(x)

Says that everything in the universe is both a whale and a mammal.

● Existential quantification naturally uses conjunction:

∃x Owns(Mary,x) ⇒ Cat(x)
Says either there is something in the universe that Mary does not own or there

exists a cat in the universe.

● ∀x Owns(Mary,x) ⇒ Cat(x)
Says all Mary owns is cats (i.e. everything Mary owns is a cat). Also true if

Mary owns nothing.

● ∀x Cat(x) ⇒ Owns(Mary,x)
Says that Mary owns all the cats in the universe.Also true if there are no cats in

the universe.

Nesting Quantifiers

• The order of quantifiers of the same type doesn’t matter

∀x∀y(Parent(x,y) ∧ Male(y) ⇒ Son(y,x))

∃x∃y(Loves(x,y) ∧ Loves(y,x))

• The order of mixed quantifiers does matter:

1. ∀x∃y(Loves(x,y)) : Says everybody loves somebody, i.e. everyone has

someone whom they love.

2. ∃y∀x(Loves(x,y)): Says there is someone who is loved by everyone in the

universe.

3. ∀y∃x(Loves(x,y)): Says everyone has someone who loves them.

4. ∃x∀y(Loves(x,y)): Says there is someone who loves everyone in the

universe.

Relation Between Quantifiers

• Universal and existential quantification are logically related

• to each other:

• ∀x ¬Love(x,Saddam) ⇔ ¬∃x Loves(x,Saddam)

• ∀x Love(x,Princess-Di) ⇔ ¬∃x ¬Loves(x,Princess-Di)

• General Identities

• ∀x ¬P ⇔ ¬∃x P

• ¬∀x P ⇔ ∃x ¬P

• ∀x P ⇔ ¬∃x ¬P

• ∃x P ⇔ ¬∀x ¬P

• ∀x P(x)∧Q(x) ⇔ ∀xP(x) ∧ ∀xQ(x)

• ∃x P(x)∨Q(x) ⇔ ∃xP(x) ∨ ∃xQ(x)

In First-Order Logic, inference is used to derive new facts or sentences from existing ones.

Substitution:

Substitution is a basic procedure that is applied to terms and formulations. It can be found in all first-order logic

inference systems. When there are quantifiers in FOL, the substitution becomes more complicated. When we write

F[a/x], we are referring to the substitution of a constant "a" for the variable "x."

Equality:

In First-Order Logic, atomic sentences are formed not only via the use of predicate and words, but also through the

application of equality. We can do this by using equality symbols, which indicate that the two terms relate to the

same thing.

Example: Brother (John) = Smith.

In the above example, the object referred by the Brother (John) is close to the object referred by Smith. The equality

symbol can be used with negation to portray that two terms are not the same objects.

Example: ￢(x=y) which is equivalent to x ≠y.

Inference in First order logic

FOL inference rules for quantifier:

First-order logic has inference rules similar to propositional logic, therefore here are some

basic inference rules in FOL:

● Universal Generalization

● Universal Instantiation

● Existential Instantiation

● Existential introduction

Inference in First order logic

Inference in First order logic

Universal Generalization

● Universal generalization is a valid inference rule that states that if premise P(c) is

true for any arbitrary element c in the universe of discourse, we can arrive at the

conclusion x P. (x).

● It can be represented as

● If we want to prove that every element has a similar property, we can apply this rule.

● x must not be used as a free variable in this rule.

Let's represent, P(c): "A byte contains 8 bits", so "All bytes contain 8 bits."for ∀ x P(x) , it

will also be true.

Inference in First order logic

Universal Instantiation:

A valid inference rule is universal instantiation, often known as universal elimination or UI.

IF "Every person like ice-cream"=> ∀x P(x) so we can infer that

"John likes ice-cream" => P(c)

Let's take a example,

"All kings who are greedy are Evil." So let our knowledge base contains this detail as in the

form of FOL: ∀x king(x) ∧ greedy (x) → Evil (x),

We can infer any of the following statements using Universal Instantiation from this

information:

● King(John) ∧ Greedy (John) → Evil (John),

● King(Richard) ∧ Greedy (Richard) → Evil (Richard),

● We can infer any phrase by replacing a ground word for the variable, according to UI

● King(Father(John)) ∧ Greedy (Father(John)) → Evil (Father(John)),

Inference in First order logic

Existential Instantiation:

● Existential instantiation is also known as Existential Elimination, and it is a

legitimate first-order logic inference rule.

● It can only be used to replace the existential sentence once.

From the given sentence: ∃x Crown(x) ∧ OnHead(x, John),

So we can infer: Crown(K) ∧ OnHead(K, John), as long as K does not appear in the

knowledge base.

● The above used K is a constant symbol, which is known as Skolem constant.

● The Existential instantiation is a special case of Skolemization process.

Inference in First order logic

Existential introduction

● An existential generalization is a valid inference rule in first-order

logic that is also known as an existential introduction.

● This rule argues that if some element c in the universe of

discourse has the property P, we can infer that something in the

universe has the attribute P.

● Example: Let's say that,

"Priyanka got good marks in English."

"Therefore, someone got good marks in English."

Inference in First order logic

FOL inference rules for quantifier:

Universal generalization is a valid inference rule that states that if premise P(c) is true for any

arbitrary element c in the universe of discourse, we can arrive at the conclusion x P. (x).

It can be represented as:

● If we want to prove that every element has a similar property, we can apply this rule.

● x must not be used as a free variable in this rule.

Example: Let's represent,

P(c): "A byte contains 8 bits", so "All bytes contain 8 bits."for ∀ x P(x) , it will also be true.

Inference in First order logic

Knowledge Engineering in First-order logic

The process of constructing a knowledge-base in first-order logic is called as

knowledge- engineering.

1. Identify the task:

● Does the circuit add properly?

● What will be the output of gate A2, if all the inputs are

high?

● Which gate is connected to the first input terminal?

● Does the circuit have feedback loops?

Knowledge Engineering in First-order logic

2. Assemble the relevant knowledge:

In the second step, we will assemble the relevant knowledge which is required for digital

circuits. So for digital circuits, we have the following required knowledge:

• Logic circuits are made up of wires and gates.

• Signal flows through wires to the input terminal of the gate, and each gate produces

the corresponding output which flows further.

• In this logic circuit, there are four types of gates used: AND, OR, XOR, and NOT.

• All these gates have one output terminal and two input terminals (except NOT gate, it

has one input terminal).

Knowledge Engineering in First-order logic

3. Decide on vocabulary:

• The next step of the process is to select functions, predicate, and constants to

represent the circuits, terminals, signals, and gates.

• The functionality of each gate is determined by its type, which is taken as constants

such as AND, OR, XOR, or NOT.

• Circuits will be identified by a predicate: Circuit (C1).

• For the terminal, we will use predicate: Terminal(x).

• For gate input, we will use the function In(1, X1) for denoting the first input terminal of

the gate, and for output terminal we will use Out (1, X1).

• The function Arity(c, i, j) is used to denote that circuit c has i input, j output.

• The connectivity between gates can be represented by predicate Connect(Out(1, X1),

In(1, X1)).

Knowledge Engineering in First-order logic

4. Encode general knowledge about the domain:

To encode the general knowledge about the logic circuit, we need some following

rules:

○ If two terminals are connected then they have the same input signal, it can be

represented as:

∀ t1, t2 Terminal (t1) ∧ Terminal (t2) ∧ Connect (t1, t2) → Signal (t1) = Signal

(2).

○ Signal at every terminal will have either value 0 or 1, it will be represented as:

∀ t Terminal (t) →Signal (t) = 1 ∨Signal (t) = 0.

Knowledge Engineering in First-order logic

5. Encode a description of the problem instance

The given circuit C1, we can encode the problem instance in atomic sentences as

below:

Since in the circuit there are two XOR, two AND, and one OR gate so atomic

sentences for these gates will be

1. For XOR gate: Type(x1)= XOR, Type(X2) = XOR

2. For AND gate: Type(A1) = AND, Type(A2)= AND

3. For OR gate: Type (O1) = OR.

Knowledge Engineering in First-order logic

6. Pose queries to the inference procedure and get answers

What should be the combination of input which would generate the first output of

circuit C1, as 0 and a second output to be 1?

1. ∃ i1, i2, i3 Signal (In(1, C1))=i1 ∧ Signal (In(2, C1))=i2 ∧ Signal (In(3, C1))= i3 ∧

Signal (Out(1, C1)) =0 ∧ Signal (Out(2, C1))=1

7. Debug the knowledge base:

Now we will debug the knowledge base, and this is the last step of the complete

process. In this step, we will try to debug the issues of knowledge base.

	Slide 1: Knowledge Representation
	Slide 2: What is knowledge representation?
	Slide 3: Knowledge representation
	Slide 4: Types of Knowledge
	Slide 5: Types of Knowledge
	Slide 6: Types of Knowledge
	Slide 7: Relation between knowledge and intelligence:
	Slide 8: Logical Agents
	Slide 9: Knowledge Based Agents
	Slide 10: Knowledge Based Agents
	Slide 11: Generic Knowledge-Based Agent
	Slide 12: Generic Knowledge-Based Agent
	Slide 13: A simple knowledge-based agent
	Slide 14: A Wumpus World
	Slide 15: Wumpus World PEAS description
	Slide 16: Wumpus world characterization
	Slide 17: Wumpus World
	Slide 18: Exploring the Wumpus World
	Slide 19: Sample Run
	Slide 20: Sample Run
	Slide 21: Sample Run
	Slide 22: Sample Run
	Slide 23: Sample Run
	Slide 24: Sample Run
	Slide 25: Sample Run
	Slide 26: Sample Run
	Slide 27: Sample Run
	Slide 1: Logic + Reasoning + Inference
	Slide 2: Logic + Reasoning + Inference
	Slide 3: Knowledge Representation Languages and Inference
	Slide 4: Knowledge Representation Languages and Inference
	Slide 5: Propositional Logic Syntax
	Slide 6: Propositional Logic Semantics
	Slide 7: Validity and Inference
	Slide 8: Logical equivalence
	Slide 9: Models and Entailment
	Slide 10: Models and Entailment
	Slide 11: Validity and Inference
	Slide 12: Satisfiability and Complexity of Inference
	Slide 13: Satisfiability and Complexity of Inference
	Slide 14: Validity and satisfiability
	Slide 15: Rules of Inference
	Slide 16: Sample Rules of Inference
	Slide 17: Sample Proof
	Slide 1: Logical equivalence
	Slide 2: Rules of Inference
	Slide 3: Sample Rules of Inference
	Slide 4: Sample Proof
	Slide 5: Proof methods
	Slide 6: Proof methods
	Slide 7: Application of inference rules Conversion to CNF
	Slide 8: Resolution example
	Slide 9: Reasoning with Horn Clauses
	Slide 10: Forward Chaining
	Slide 11: Forward Chaining
	Slide 12: Forward Chaining
	Slide 13: Forward Chaining
	Slide 14: Forward Chaining
	Slide 15: Backward Chaining
	Slide 16: Backward Chaining
	Slide 17: Backward Chaining
	Slide 18: Backward Chaining
	Slide 19: Model Checking in Propositional Logic
	Slide 20: Model Checking in Propositional Logic
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 1: Propositional Logic
	Slide 2: Agents based on Propositional Logic
	Slide 3: The current state of the world
	Slide 4: The current state of the world
	Slide 5: Making plans by propositional inference
	Slide 6: Prove that Wumpus is in the room (1, 3)
	Slide 7: Prove that Wumpus is in the room (1, 3)
	Slide 8: First order Logic
	Slide 9: Example
	Slide 10: First Order Logic
	Slide 11: Syntax for First-Order Logic
	Slide 12: First-Order Logic
	Slide 13
	Slide 14: Quantifiers in First-order logic:
	Slide 15: First Order Logic
	Slide 16: Use of Quantifiers
	Slide 17: Nesting Quantifiers
	Slide 18: Variable Scope
	Slide 19: Relation Between Quantifiers
	Slide 20: Equality
	Slide 21: Higher-Order Logic
	Slide 22: Propositional vs. Predicate Logic
	Slide 23: Predicate logic / Ontology
	Slide 24: First-Order Logic: Terms and Predicates
	Slide 25: First-Order Logic: Terms and Predicates
	Slide 1: First order Logic
	Slide 2: Example
	Slide 3: First Order Logic
	Slide 4: Syntax for First-Order Logic
	Slide 5: First-Order Logic
	Slide 6: Quantifiers in First-order logic:
	Slide 7: First Order Logic
	Slide 8: Use of Quantifiers
	Slide 9: Nesting Quantifiers
	Slide 10: Relation Between Quantifiers
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1: Knowledge Engineering in First-order logic
	Slide 2: Knowledge Engineering in First-order logic
	Slide 3: Knowledge Engineering in First-order logic
	Slide 4: Knowledge Engineering in First-order logic
	Slide 5: Knowledge Engineering in First-order logic
	Slide 6: Knowledge Engineering in First-order logic

