
UNIT 5

Reasoning

Knowledge Representation

• When we use search to solve a problem we must

– Capture the knowledge needed to formalize the problem

– Apply a search technique to solve problem

– Execute the problem solution

Role of KR

• The first step is the role of “knowledge representation” in AI.

• Formally,

– The intended role of knowledge representation in artificial intelligence is to reduce problems

of intelligent action to search problems.

Limitations of Propositional Logic
• Propositional logic cannot express general-purpose knowledge

succinctly

• We need 32 sentences to describe the relationship between wumpi and
stenches

• We would need another 32 sentences for pits and breezes

• We would need at least 64 sentences to describe the effects of actions

• How would we express the fact that there is only one wumpus?

• Difficult to identify specific individuals (Mary, among 3)

• Generalizations, patterns, regularities difficult to represent (all triangles
have 3 sides)

First-Order Predicate Calculus

• Propositional Logic uses only propositions (symbols
representing facts), only possible values are True and False

• First-Order Logic includes:
– Objects: peoples, numbers, places, ideas (atoms)

– Relations: relationships between objects (predicates, T/F value)
• Example: father(fred, mary)

• Properties: properties of atoms (predicates, T/F value)
Example: red(ball)

– Functions: father-of(mary), next(3), (any value in range)
• Constant: function with no parameters, MARY

Example

• Express “Socrates is a man” in

• Propositional logic

– MANSOCRATES - single proposition representing entire idea

• First-Order Predicate Calculus

– Man(SOCRATES) - predicate representing property of constant SOCRATES

DeMorgan Rules

•
•
•
•
• Example

Rules of Inference for Predicate Logic

• Modus ponens

• And introduction

• Or introduction

• And elimination

• Double-negation elimination

• Unit resolution

• Resolution

All men are mortal (Man -> Mortal)

Socrates is a man (Man)

--

-

Socrates is mortal (Mortal)

Today is Tuesday or Thursday

Today is not Thursday

Today is Tuesday

Today is Tuesday or Thursday

Today is not Thursday or tomorrow is Friday

--

Today is Tuesday or tomorrow is Friday

Inference in First-Order Logic: First-Order Deduction

• Want to be able to draw logically sound conclusions from a
knowledge-base expressed in first-order logic.

•Several styles of inference:
-Forward chaining

-Backward chaining

-Resolution refutation

•Properties of inference procedures (Entail):
-Soundness: If A |- B (“If A, then B” asserts that if A is true, then B must be
true also), then A |= B (A is equal to B)

-Completeness: If A |= B (A is equal to B), then A |- B (“If A, then B” asserts
that if A is true, then B must be true also)

•Forward and Backward chaining are sound and can be reasonably
efficient but are incomplete.

•Resolution is sound and complete for FOPC but can be very inefficient.

Inference Rules for Quantifiers
Let SUBST(θ, α) denote the result of applying a substitution or binding list θ to the sentence α.
SUBST({x/Tom, y,/Fred}, Uncle(x,y)) = Uncle(Tom, Fred)

Inference rules

Universal Elimination: ∀v α |− SUBST({v/g},α)

for any sentence α, variable v, and ground term g

∀x Loves(x, FOPC) |− Loves(Ray, FOPC)

Existential Elimination: ∃v α |− SUBST({v/k},α)

for any sentence α, variable v, and constant symbol k,

that doesn’t occur elsewhere in the KB (Skolem constant)

∃x (Owns(Mary ,x) ∧ Cat(x)) |− Owns(Mary, MarysCat) ∧
Cat(MarysCat)

-Existential Introduction: α |- ∃v SUBST({g/v},α)

for any sentence α, variable,v, that does not occur in α, and ground term g, that does occur in α
Loves(Ray, FOPC) |− ∃x Loves(x, FOPC)

Inference Rules for Quantifiers
1) ∀x,y(Parent (x,y) ∧ Male (x) ⇒ Father (x,y))

2) Parent(Tom, John)

3) Male(Tom)

Using Universal Elimination from 1)

4) ∀y(Parent(Tom, y) ∧ Male(Tom) ⇒ Father(Tom, y))

Using Universal Elimination from 4)

5) Parent(Tom, John) ∧ Male(Tom) ⇒ father (Tom, John)

Using And Introduction from 2) and 3)

6) Parent(Tom, John) ∧ Male(Tom)

Using Modes Ponens from 5) and 6)

7) Father(Tom, John)

Generalized Modus Ponens
● Combines three steps of “natural deduction”
● (Universal Elimination, And Introduction, Modus Ponens) into one.
● Provides direction and simplification to the proof process for standard inferences.

Generalized Modus Ponens:

1) ∀x,y(Parent(x,y) ∧ Male(x) ⇒ Father(x,y))

2) Parent(Tom,John)

3) Male(Tom)

θ={x/Tom, y/John)

4) Father(Tom,John)

Propositional vs. Predicate Logic

• In propositional logic, each possible atomic fact requires a

separate unique propositional symbol.

• If there are n people and m locations: representing the fact

that some person moved from one location to another

requires nm2 separate symbols.

• Predicate logic includes a richer ontology.

• Ontology: A rigorous and exhaustive organization of

some knowledge domain that is usually hierarchical and

contains all the relevant entities and their relations.

Unification
• In order to match antecedents /premise to existing literals in the KB, need a pattern

matching routine.

• UNIFY(p, q) takes two atomic sentences and returns a substitution that makes them
equivalent.

• UNIFY(p, q)=θ where SUBST(θ, p)=SUBST(θ, q)

θ is called a unifier.

• Examples

• UNIFY(Parent(x,y), Parent(Tom, John)) = {x/Tom, y/John}

• UNIFY(Parent(Tom, x), Parent(Tom, John)) = {x/John})

• UNIFY(Likes(x,y), Likes(z, FOPC)) = {x/z, y/FOPC}

• UNIFY(Likes(Tom, y), Likes(z,FOPC)) = {z/Tom, y/FOPC}

• UNIFY(Likes(Tom, y), Likes(y, FOPC)) = fail

• UNIFY(Likes(Tom, Tom), Likes(x, x)) = {x/Tom}

• UNIFY(Likes(Tom, Fred), Likes(x, x)) = fail

Unification
● Exact variable names used in sentences in the KB should not matter.
● But if Likes(x, FOPC) is a formula in the KB, it does not unify with Likes(John, x) but

does unify with Likes(John, y).
● To avoid such conflicts, one can standardize apart one of the arguments to UNIFY

to make its variables unique by renaming them.

Likes(x ,FOPC) -> Likes(x1, FOPC)

● UNIFY(Likes(John ,x), Likes(x1,FOPC)) = {x1/John, x/FOPC}
● There are many possible unifiers for some atomic sentences.
● UNIFY(Likes(x,y),Likes(z,FOPC)) = {x/z, y/FOPC}

{x/John, z/John, y/FOPC}

{x/Fred, z/Fred, y/FOPC}

● UNIFY should return the most general unifier which makes the least commitment
to variable values.

Unification
We sometimes want to “match” statements

● -dog(?x) v feathers(?x)

● Feathers(Tweety)

● Dog(Rufus)

● (?x Tweety)

The match needs to be consistent

During the match we build a binding list

Example

● -hold(P1, ?card) ^ -hold(P2, ?card) ^ -hold(P3, ?card) -> solution(?card)

● -hold(P1, Rope) ^ -hold(P2, Rope) ^ -hold(P3, Rope)

If we substitute ?card with Rope everywhere (?card Rope) then statement is equivalent

to the left-hand side of the rule

Two expressions are unifiable iff there exists a substitution list (binding list) that, when

applied to both expressions, makes them the same

Unification
We sometimes want to “match” statements

● -dog(?x) v feathers(?x)

● Feathers(Tweety)

● Dog(Rufus)

● (?x Tweety)

The match needs to be consistent

During the match we build a binding list

Example

● -hold(P1, ?card) ^ -hold(P2, ?card) ^ -hold(P3, ?card) -> solution(?card)

● -hold(P1, Rope) ^ -hold(P2, Rope) ^ -hold(P3, Rope)

If we substitute ?card with Rope everywhere (?card Rope) then statement is equivalent

to the left-hand side of the rule

Two expressions are unifiable iff there exists a substitution list (binding list) that, when

applied to both expressions, makes them the same

Unification

● Three valid types of substitutions:

variable -> constant

variable1 -> variable2

variable -> function, if function doesn't contain variable

Unification Code

// Determine whether two expressions can be unified. If yes, return bindings. If
no, return FAIL

Function unify(p1, p2, bindings)

If (p1 = p2) return bindings

If var(p1) try to add (p1 p2) to list of bindings

If var(p2) try to add (p2 p1) to list of bindings

If p1&p2 are length 1 return FAIL

If (length(p1) != length(p2)) return FAIL

Recursively unify each term pair in p1 and p2

Return binding list

Examples

● f(?x, ?x) and f(?y, ?z)

○ ?

● f(?x, ?x) and f(John, Fred)

○ ?

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ ?

● f(?x, ?y, ?z) and f(?y, ?z, Fred)

○ ?

● p(?x, ?x) and p(cook,henderson)

?

● p(?x, ?x) and p(cook, ?y) ?

Examples

● f(?x, ?x) and f(?y, ?z)

○ OK ((?x ?y) (?y ?z))

● f(?x, ?x) and f(John, Fred)

○ ?

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ ?

● f(?x, ?y, ?z) and f(?y, ?z, Fred)

○ ?

● p(?x, ?x) and p(cook,henderson)

?

● p(?x, ?x) and p(cook, ?y) ?

Examples

● f(?x, ?x) and f(?y, ?z)

○ OK ((?x ?y) (?y ?z))

● f(?x, ?x) and f(John, Fred)

○ NO

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ ?

● f(?x, ?y, ?z) and f(?y, ?z, Fred)

○ ?

● p(?x, ?x) and p(cook,henderson)

?

● p(?x, ?x) and p(cook, ?y) ?

Examples

● f(?x, ?x) and f(?y, ?z)

○ OK ((?x ?y) (?y ?z))

● f(?x, ?x) and f(John, Fred)

○ NO

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ NO

● f(?x, ?y, ?z) and f(?y, ?z, Fred)
○ ?

● p(?x, ?x) and p(cook,henderson)

?

● p(?x, ?x) and p(cook, ?y) ?

Examples

● f(?x, ?x) and f(?y, ?z)

○ OK ((?x ?y) (?y ?z))

● f(?x, ?x) and f(John, Fred)

○ NO

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ NO

● f(?x, ?y, ?z) and f(?y, ?z, Fred)
○ OK ((?x ?y) (?y ?z) (?z Fred))

● p(?x, ?x) and p(cook,henderson)

?

● p(?x, ?x) and p(cook, ?y) ?

Examples

● f(?x, ?x) and f(?y, ?z)

○ OK ((?x ?y) (?y ?z))

● f(?x, ?x) and f(John, Fred)

○ NO

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ NO

● f(?x, ?y, ?z) and f(?y, ?z, Fred)
○ OK ((?x ?y) (?y ?z) (?z Fred))

● p(?x, ?x) and p(cook,henderson)

NO

● p(?x, ?x) and p(cook, ?y) ?

Examples

● f(?x, ?x) and f(?y, ?z)

○ OK ((?x ?y) (?y ?z))

● f(?x, ?x) and f(John, Fred)

○ NO

● f(?x, ?y, ?z) and f(?y, John, Fred)
○ NO

● f(?x, ?y, ?z) and f(?y, ?z, Fred)
○ OK ((?x ?y) (?y ?z) (?z Fred))

● p(?x, ?x) and p(cook,henderson)

NO

● p(?x, ?x) and p(cook, ?y) OK ((?x

cook) (?y cook))

Unifiers

● Note that there can be more than one binding list that unifies two

expressions.
○ (f ?x) (f ?y)

○ binding list = ((?x ?y)) or ((?x foo) (?y foo))

● In general, we prefer to not overly constrain the substitutions.

● If keep general, result can apply to greater number of future situations.
● The less constraints placed, the more general the substitution (the

binding list, or unifier)

● Given expressions p and q, a unifier of p and q is any binding list b such
that pb = qb (pb means binding list b is applied to expression p)

Most General Unifier
● Unifier b1 is more general than unifier b2 if for every expression p, pb2 is an instance of pb1

(or pb1b3 = pb2)

● ((?x ?y)) is more general than ((?x foo) (?y foo))

○ because (f ?x) ((?x ?y)) ((?y foo)) = (f ?x) ((?x foo) (?y foo))

● If two expressions are unifiable, then there exists an mgu (most general unifier)

● The code we designed returns an mgu.

Q(F(?x), ?z, A) and Q(?a, ?z, ?y)

Unifiable?

Yes! substitution list = ((?a F(?x)) (?y A))

P(?x) and P(A)?

P(F(?x, G(A,?y)), G(A,?y)) and P(F(?x,?z), ?z)?

Q(?x, ?y, A) and Q(B, ?y, ?z)?

R(?x) and R(F(?x))?

Find the MGU of {p(f(a), g(Y)) and p(X, X)}

Sol: S0 => Here, L1 = p(f(a), g(Y)), and L2 = p(X, X)

SUBST θ= {f(a) / X}

S1 => L1 = p(f(a), g(Y)), and L2 = p(f(a), f(a))

SUBST θ= {f(a) / g(y)}, Unification failed.

First order Inference

1. Resolution

2. Forward Chaining

3. Backward Chaining

Converting To Clausal Form

Two benefits of seeing this process:

● Learn sound inference rules

● Convert FOPC to clausal form for use in resolution proofs

1. Eliminate biconditionals and implications:

• Eliminate ⇔, replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α).

• Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β.

2. Move ¬ inwards:

• ¬(∀ x p) ≡ ∃ x ¬p,

• ¬(∃ x p) ≡ ∀ x ¬p,

• ¬(α ∨ β) ≡ ¬α ∧ ¬β,

• ¬(α ∧ β) ≡ ¬α ∨ ¬β,

• ¬¬α ≡ α.

3. Standardize variables apart by renaming them: each quantifier should

use a different variable.

First Order Logic: Conversion to CNF

4. Skolemize: each existential variable is replaced by a Skolem constant

or Skolem function of the enclosing universally quantified variables.

• For instance, ∃x Rich(x) becomes Rich(G1) where G1 is a new

Skolem constant.

• “Everyone has a heart”

∀ x P erson(x) ⇒ ∃ y Heart(y) ∧ Has(x, y) becomes ∀ x P erson(x) ⇒
Heart(H(x)) ∧ Has(x, H(x)), where H is a new symbol (Skolem

function).

5. Drop universal quantifiers

• For instance, ∀ x P erson(x) becomes Person(x).

6. Distribute ∧ over ∨:

• (α ∧ β) ∨ γ ≡ (α ∨ γ) ∧ (β ∨ γ).

First Order Logic: Conversion to CNF

Examples

● FORALL x P(x)

P(x)

● FORALL x P(x) -> Q(x,A)

~P(x) v Q(x,A)

● EXISTS x P(x)

P(E), where E is a new constant

● P(A) -> EXISTS x Q(x)

~P(A) v Q(F)

● FORALL x P(x)

~P(G)

● P(A) -> Q(B,C)
~P(A) v Q(B,C)

● ~(P(A) -> Q(B,C))
P(A), ~Q(B,C)

● P(A) ^ (Q(B,C) v R(D))
P(A), Q(B,C) v R(D)

● P(A) v (Q(B,C) ^ R(D))

P(A) v Q(B,C)
P(A) v R(D)

Logical inference algorithms use forward and backward chaining

approaches, which require KB in the form of the first-order definite

clause.

Definite clause: A clause which is a disjunction of literals with exactly one

positive literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one

positive literal is known as horn clause. Hence all the definite clauses are

horn clauses.

Example: (¬ p V ¬ q V k). It has only one positive literal k.

It is equivalent to p ∧ q → k.

Inference in First Order Logic

● Forward chaining is also known as a forward deduction or

forward reasoning method when using an inference engine.

Forward chaining is a form of reasoning which start with atomic

sentences in the knowledge base and applies inference rules

(Modus Ponens) in the forward direction to extract more data

until a goal is reached.

● The Forward-chaining algorithm starts from known facts, triggers

all rules whose premises are satisfied, and add their conclusion

to the known facts. This process repeats until the problem is

solved.

Forward Chaining

Forward Chaining

Properties of Forward-Chaining:

● It is a down-up approach, as it moves from bottom to top.

● It is a process of making a conclusion based on known facts or data,

by starting from the initial state and reaches the goal state.

● Forward-chaining approach is also called as data-driven as we

reach to the goal using available data.

● Forward -chaining approach is commonly used in the expert system,

such as CLIPS, business, and production rule systems.

Example:

"As per the law, it is a crime for an American to sell weapons to hostile

nations. Country A, an enemy of America, has some missiles, and all

the missiles were sold to it by Robert, who is an American citizen."

Prove that "Robert is criminal."

To solve the above problem, first, we will convert all the above facts into

first-order definite clauses, and then we will use a forward-chaining

algorithm to reach the goal.

Forward Chaining

Facts Conversion into FOL:

● It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and r

are variables)

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

● Country A has some missiles.

Owns(A, p) ∧ Missile(p).

It can be written in two definite clauses by using Existential Instantiation, introducing new

Constant T1.

Owns(A, T1) (2)

Missile(T1) (3)

Forward Chaining

Facts Conversion into FOL:

● All of the missiles were sold to country A by Robert.

∀p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

● Missiles are weapons.

Missile(p) → Weapons (p) (5)

● Enemy of America is known as hostile.

Enemy(p, America) →Hostile(p) (6)

● Country A is an enemy of America.

Enemy (A, America) (7)

● Robert is American

American(Robert). (8)

Forward Chaining

Forward chaining proof:

Forward Chaining

Step 1

Step 2

Step 3

Backward Chaining:

● Backward-chaining is also known as a backward deduction or

backward reasoning method when using an inference engine.

● A backward chaining algorithm is a form of reasoning, which starts

with the goal and works backward, chaining through rules to find

known facts that support the goal.

Properties of backward chaining:

● It is known as a top-down approach.

● Backward-chaining is based on modus ponens inference rule.

● In backward chaining, the goal is broken into sub-goal or sub-goals to prove the facts

true.

● It is called a goal-driven approach, as a list of goals decides which rules are selected

and used.

● Backward -chaining algorithm is used in game theory, automated theorem proving tools,

inference engines, proof assistants, and various AI applications.

● The backward-chaining method mostly used a depth-first search strategy for proof.

Backward Chaining

Backward Chaining

In Backward chaining, we will

start with our goal predicate,

which is Criminal(Robert),

and then infer further rules.

Resolution

● Resolution is a theorem proving technique that proceeds by building refutation

proofs, i.e., proofs by contradictions.

● Resolution is used, if there are various statements are given, and we need to

prove a conclusion of those statements. Unification is a key concept in proofs

by resolutions. Resolution is a single inference rule which can efficiently

operate on the conjunctive normal form or clausal form.

● Clause: Disjunction of literals (an atomic sentence) is called a clause. It is

also known as a unit clause.

● Conjunctive Normal Form: A sentence represented as a conjunction of

clauses is said to be conjunctive normal form or CNF.

Resolution

Resolution can resolve two clauses if they contain complementary literals, which are
assumed to be standardized apart so that they share no variables.

This rule is also called the binary resolution rule because it only resolves exactly
two literals.

Example:

We can resolve two clauses which are given below:

[Animal (g(x) V Loves (f(x), x)] and [￢ Loves(a, b) V￢Kills(a, b)]

Where two complementary literals are:

Loves (f(x), x) and￢ Loves (a, b)

These literals can be unified with unifier θ= [a/f(x), and b/x] ,

and it will generate a resolvent clause:

[Animal (g(x) V￢ Kills(f(x), x)].

Steps for Resolution:

1. Conversion of facts into first-order logic.

2. Convert FOL statements into CNF

3. Negate the statement which needs to prove (proof by contradiction)

4. Draw resolution graph (unification).

Resolution

Example:

a. John likes all kind of food.

b. Apple and vegetable are food

c. Anything anyone eats and not killed is food.

d. Anil eats peanuts and still alive

e. Harry eats everything that Anil eats.

Prove by resolution that:

f. John likes peanuts.

Resolution

Conversion of Facts into FOL

In the first step we will convert all the given statements into its first order logic.

Resolution

Conversion of FOL into CNF

In First order logic resolution, it is required to convert the FOL into CNF as CNF form makes

easier for resolution proofs.

a. ¬ food(x) V likes(John, x)

b. food(Apple)

c. food(vegetables)

d. ¬ eats(y, z) V killed(y) V food(z)

e. eats (Anil, Peanuts)

f. alive(Anil)

g. ¬ eats(Anil, w) V eats(Harry, w)

h. killed(g) V alive(g)

i. ¬ alive(k) V ¬ killed(k)

j. likes(John, Peanuts).

Resolution

Negate the statement to be proved

In this statement, we will apply negation to the

conclusion statements, which will be written as

¬likes(John, Peanuts)

Draw Resolution graph:

Now in this step, we will solve the problem by

resolution tree using substitution. For the above

problem, it will be given as follows:

Resolution

Knowledge Representation

There are mainly four ways of

knowledge representation which are

given as follows:

1. Logical Representation

2. Semantic Network Representation

3. Frame Representation

4. Production Rules

Logical Representation

Logical representation is a language with some concrete rules which deals with

propositions and has no ambiguity in representation. Logical representation

means drawing a conclusion based on various conditions.

Logical representation can be categorised into mainly two logics:

a. Propositional Logics

b. Predicate logics

Knowledge Representation

Semantic Network

Representation

Semantic networks are alternative of

predicate logic for knowledge

representation. In Semantic

networks, we can represent our

knowledge in the form of graphical

networks. This network consists of

nodes representing objects and arcs

which describe the relationship

between those objects.

Knowledge Representation

Statements:

a. Jerry is a cat.

b. Jerry is a mammal

c. Jerry is owned by Priya.

d. Jerry is brown colored.

e. All Mammals are animal.

Frame Representation

● A frame is a record like structure

which consists of a collection of

attributes and its values to describe

an entity in the world. Frames are

the AI data structure which divides

knowledge into substructures by

representing stereotypes situations.

Knowledge Representation

Slots Filters

Title Artificial Intelligence

Genre Computer Science

Author Peter Norvig

Edition Third Edition

Year 1996

Page 1152

Production Rules

Production rules system consist of (condition,

action) pairs which mean, "If condition then

action". It has mainly three parts:

● The set of production rules

● Working Memory

● The recognize-act-cycle

In production rules agent checks for the condition

and if the condition exists then production rule

fires and corresponding action is carried out.

Knowledge Representation

If Signal== RED

Action Stop

If Signal== GREEN

Action Go

If Signal== YELLOW

Action Wait

● In toy domains, the choice of representation is not

important.

● It is easy to come up with a consistent vocabulary.

● Complex domains require more general and flexible

representations:

● shopping on the Internet

● controlling a robot in a changing environment

● diagnosing problematic situations in wastewater

management

Ontological Engineering

● Ontological engineering consists of representing the

abstract concepts that occur in many different

domains:

Actions

Time

Physical Objects

Beliefs

...

● It is related to knowledge engineering, but operates on

a larger scale.

Ontological Engineering

● Representing everything in the world can be a

problem.

● We leave placeholders where new knowledge can fit

in.

● For example, we can define what it means to be a

physical object.

● The different types of object can be filled later:

robots

televisions

books

Ontological Engineering

● The general framework of concepts is called an upper

ontology,

● because of the convention of drawing graphs with:

the general concepts at the top

the more specific concepts below them

Ontological Engineering

● Certain aspects of the real world are hard to capture in

FOL:

● Almost all generalizations have exceptions

● They hold only to a degree

Example:

“Tomatoes are red” is a useful rule, but...

● Some tomatoes are green, yellow or orange.

● The ability to handle exceptions and uncertainty is

extremely important.

Ontological Engineering

● For any special-purpose ontology, it is possible to

move toward greater generality.

● Do all ontologies converge on a general-purpose

ontology?

Possibly

Ontological Engineering

● Main characteristics of general-purpose ontologies that

distinguish them from collections of special-purpose

ontologies:

● A general-purpose ontology should be applicable in any

special-purpose domain.

● In any sufficiently demanding domain, different areas of

knowledge have to be unified.

● Reasoning and problem solving could involve several

areas simultaneously.

Ontological Engineering

Categories and Objects

● Concepts are organized in taxonomies, linked by

relations and conforming to axioms.

● Axioms can be very general, e.g.: “a fox is not a

shifty deceptive person” or “a Firefox is not a fox”.

● The organization of objects into categories is a vital

part of knowledge representation.

Categories and Objects

● Interaction with the world takes place at the level of

individual objects, but:

● much reasoning takes place at the level of

categories.

● Example:

● A shopper might have the goal of buying a mouse,

rather than a particular mouse such as a V470

Cordless Laser Mouse.

Categories and Objects

● Categories can serve to make predictions about

objects, once they are classified.

● Inferring the presence of certain objects from

perceptual input

● Inferring category membership from the perceived

properties of the object

● Example:

● From an object being a watermelon, one infers that it

would be useful for fruit salad.

Unit 5:Reasoning

Mental Objects and Modal Logic,

Reasoning Systems for Categories,

Reasoning with Default Information

Session Plan

https://docs.google.com/document/d/1_tHXXC5RqXjaLQqse_2DLpOLdrjiqLlJ/edit?usp=share_link&ouid=113630521719005418590&rtpof=true&sd=true

● A mental event is any event that happens within the mind of

a conscious individual.

● Examples include thoughts, feelings, decisions, dreams, and

realizations.

● Some believe that mental events are not limited to human

thought but can be associated with animals and artificial

intelligence as well.

Mental Event and Mental Objects

● A mental event is any event that happens within the mind of

a conscious individual.

● Examples include thoughts, feelings, decisions, dreams, and

realizations.

● Some believe that mental events are not limited to human

thought but can be associated with animals and artificial

intelligence as well.

Mental Event and Mental Objects

	Slide 1
	Slide 2: Knowledge Representation
	Slide 3: Role of KR
	Slide 4: Limitations of Propositional Logic
	Slide 5: First-Order Predicate Calculus
	Slide 6: Example
	Slide 7: DeMorgan Rules
	Slide 8: Rules of Inference for Predicate Logic
	Slide 9: Inference in First-Order Logic: First-Order Deduction
	Slide 10: Inference Rules for Quantifiers
	Slide 11: Inference Rules for Quantifiers
	Slide 12: Generalized Modus Ponens
	Slide 13: Propositional vs. Predicate Logic
	Slide 1: Unification
	Slide 2: Unification
	Slide 3: Unification
	Slide 4: Unification
	Slide 5: Unification
	Slide 6: Unification Code
	Slide 7: Examples
	Slide 8: Examples
	Slide 9: Examples
	Slide 10: Examples
	Slide 11: Examples
	Slide 12: Examples
	Slide 13: Examples
	Slide 14: Unifiers
	Slide 15: Most General Unifier
	Slide 16
	Slide 17
	Slide 18: Converting To Clausal Form
	Slide 19
	Slide 20
	Slide 21: Examples

