
Unit 4

Operating Systems

Syllabus

Software

• Types of software:

i) System Software: Which manage the
operation of computer itself.

Ii) Application Software: Which performs the
actual work the user wants.

What is OS?

• An operating system is a program that acts as
an interface between the user and the
computer hardware and controls the
execution of all kinds of programs.

Examples of OS

• Windows XP

• Windows 7

• Linux/Unix

• Windows 8

Functions of OS

Functions of OS

• Memory Management
• Processor Management
• Device Management
• File Management
• Security
• Control over system performance
• Job accounting
• Error detecting aids
• Coordination between other software and users

Memory Management

• Memory management refers to management
of Primary Memory or Main Memory.

• Main memory is a large array of words or
bytes where each word or byte has its own
address.

• Main memory provides a fast storage that can
be accessed directly by the CPU.

• For a program to be executed, it must in the
main memory.

An Operating System does the following activities for
memory management:

• Keeps tracks of primary memory, i.e., what part of it
are in use by whom, what part are not in use.

• In multiprogramming, the OS decides which process
will get memory when and how much.

• Allocates the memory when a process requests it to do
so.

• De-allocates the memory when a process no longer
needs it or has been terminated.

Processor Management

• In multiprogramming environment, the OS decides which
process gets the processor when and for how much time.

• This function is called process scheduling.
• An Operating System does the following activities for

processor management:
• Keeps tracks of processor and status of process.
• The program responsible for this task is known as traffic

controller.
• Allocates the processor (CPU) to a process.
• De-allocates processor when a process is no longer

required.

Device Management

• An Operating System manages device communication via
their respective drivers.

• It does the following activities for device management:

• Keeps tracks of all devices. The program responsible for this
task is known as the I/O controller.

• Decides which process gets the device when and for how
much time.

• Allocates the device in the most efficient way.
• De-allocates devices.

File Management

• A file system is normally organized into
directories for easy navigation and usage.
These directories may contain files and other
directions.

• An Operating System does the following
activities for file management:

• Keeps track of information, location, uses, status
etc. The collective facilities are often known as
file system.

• Decides who gets the resources.

• Allocates the resources.

• De-allocates the resources.

• Security -- By means of password and similar
other techniques, it prevents unauthorized
access to programs and data.

• Control over system performance --
Recording delays between request for a
service and response from the system.

• Job accounting -- Keeping track of time and
resources used by various jobs and users.

• Error detecting aids -- Production of dumps,
traces, error messages, and other debugging and
error detecting aids.

• Coordination between other software and users

• Coordination and assignment of compilers,
interpreters, assemblers and other software to
the various users of the computer systems

Operating System ─ Services

Operating System ─ Services

• An Operating System provides services to both
the users and to the programs.

• It provides programs an environment to
execute.

• It provides users the services to execute the
programs in a convenient manner.

• Following are a few common services provided
by an operating system:

• Program execution

• I/O operations

• File System manipulation

• Communication

• Error Detection

• Resource Allocation

• Protection

Program Execution

• Following are the major activities of an operating
system with respect to program management:

• Loads a program into memory

• Executes the program

• Handles program's execution

• Provides a mechanism for process
synchronization

• Provides a mechanism for process
communication.

I/O Operation

• An Operating System manages the
communication between user and device
drivers.

• I/O operation means read or write operation
with any file or any specific I/O device.

• Operating system provides the access to the
required I/O device when required.

File System Manipulation

• Following are the major activities of an operating
system with respect to file management:

• Program needs to read a file or write a file.
• The operating system gives the permission to the

program for operation on file.
• Permission varies from read-only, read-write,

denied, and so on.
• Operating System provides an interface to the

user to create/delete files.
• Operating System provides an interface to the

user to create/delete directories.
• Operating System provides an interface to create

the backup of file system.

Communication

• Following are the major activities of an operating
system with respect to communication:

• Two processes often require data to be
transferred between them.

• Both the processes can be on one computer or
on different computers, but are connected
through a computer network.

• Communication may be implemented by two
methods, either by Shared Memory or by
Message Passing.

Error Handling

• Errors can occur anytime and anywhere. An
error may occur in CPU, in I/O devices or in
the memory hardware.

• Following are the major activities of an
operating system with respect to error
handling:

• The OS constantly checks for possible errors.

• The OS takes an appropriate action to ensure
correct and consistent computing.

Resource Management

• In case of multi-user or multi-tasking
environment, resources such as main memory,
CPU cycles and files storage are to be allocated to
each user or job.

• Following are the major activities of an operating
system with respect to resource management:

• The OS manages all kinds of resources using
schedulers.

• CPU scheduling algorithms are used for better
utilization of CPU.

Protection

• Following are the major activities of an
operating system with respect to protection:

• The OS ensures that all access to system
resources is controlled.

• The OS ensures that external I/O devices are
protected from invalid access attempts.

• The OS provides authentication features for
each user by means of passwords.

System Structure-Layered
Approach

System Structure-Layered Approach

• The operating system is divided into a
number of layers (levels), each built on top of
lower layers.

• The bottom layer (layer 0) is the hardware;
the highest (layer N) is the user interface.

• With modularity, layers are selected such that
each uses functions (operations) and services
of only lower-level layers.

Types Of OS

Types Of OS(H.W.)

• Batch Operating System

• Time Sharing Operating System

• Distributed Operating System

• Network Operating System

• Real Time Operating System

Syllabus

Process Management

Process

• A process is basically a program in execution.

• The execution of a process must progress in a
sequential fashion.

• We write our computer programs in a text file
and when we execute this program, it
becomes a process which performs all the
tasks mentioned in the program.

• When a program is loaded into the memory
and it becomes a process, it can be divided
into four sections ─ stack, heap, text and data.

Process in memory

Process

Process State Diagram

• When a process executes, it passes through
different states.

• These stages may differ in different operating
systems, and the names of these states are
also not standardized.

• In general, a process can have one of the
following five states at a time.

Process State Diagram

• Start: This is the initial state when a process is first
started/created.

• Ready: The process is waiting to be assigned to a processor.

• Ready processes are waiting to have the processor
allocated to them by the operating system so that they can
run.

• Process may come into this state after Start state or while
running it by but interrupted by the scheduler to assign
CPU to some other process.

• Running: Once the process has been assigned to
a processor by the OS scheduler, the process
state is set to running and the processor executes
its instructions.

• Waiting: Process moves into the waiting state if
it needs to wait for a resource, such as waiting for
user input, or waiting for a file to become
available.

• Terminated or Exit: Once the process finishes
its execution, or it is terminated by the
operating system, it is moved to the
terminated state where it waits to be removed
from main memory.

Process Control Block

• A Process Control Block is a data structure
maintained by the Operating System for every
process.

• The PCB is identified by an integer process ID
(PID).

Diagram of Process Control Block

Process Scheduling Queues

Process Scheduling Queues

• The Operating System maintains the following important
process scheduling queues:

• Job queue - This queue keeps all the processes in the
system.

• Ready queue - This queue keeps a set of all processes
residing in main memory, ready and waiting to execute. A
new process is always put in this queue.

• Device queues - The processes which are blocked due to
unavailability of an I/O device constitute this queue.

Process Scheduling Queues

The OS can use different policies to manage each queue
(FIFO, Round Robin, Priority, etc.).

Process Schedulers

• Schedulers: Schedulers are special system
software which handle process scheduling in
various ways.

• Their main task is to select the jobs to be
submitted into the system and to decide which
process to run. Schedulers are of three types:

• Long-Term Scheduler

• Short-Term Scheduler

• Medium-Term Scheduler

Types Of Process Scheduling
Algorithms

• A Process Scheduler schedules different
processes to be assigned to the CPU based on
particular scheduling algorithms.

• There are some popular process scheduling
algorithms:

• First-Come, First-Served (FCFS) Scheduling
• Shortest-Job-Next (SJN) Scheduling
• Priority Scheduling
• Shortest Remaining Time
• Round Robin(RR) Scheduling

• Non-preemptive algorithms are designed so
that once a process enters the running state, it
cannot be preempted until it completes its
allotted time.

• Preemptive scheduling is based on priority
where a scheduler may preempt a low priority
running process anytime when a high priority
process enters into a ready state.

First Come, First Served (FCFS)

• Jobs are executed on first come, first served
basis.

• It is a non-preemptive scheduling algorithm.

• Easy to understand and implement.

• Its implementation is based on FIFO queue.

• Poor in performance, as average wait time is
high.

Shortest Job First (SJF)

• This is also known as shortest job Next, or SJN.

• This is a non-preemptive scheduling algorithm.

• Best approach to minimize waiting time.

• Easy to implement in Batch systems where
required CPU time is known in advance.

• Impossible to implement in interactive systems
where the required CPU time is not known.

• The processer should know in advance how much
time a process will take.

Priority scheduling

• Priority scheduling is a non-preemptive algorithm
and one of the most common scheduling
algorithms in batch systems.

• Each process is assigned a priority. Process with
highest priority is to be executed first and so on.

• Processes with same priority are executed on first
come first served basis.

• Priority can be decided based on memory
requirements, time requirements or any other
resource requirement.

Shortest Remaining Time

• Shortest remaining time (SRT) is the preemptive
version of the SJN algorithm.

• The processor is allocated to the job closest to
completion but it can be preempted by a newer
ready job with shorter time to completion.

• Impossible to implement in interactive systems
where required CPU time is not known.

• It is often used in batch environments where
short jobs need to be given preference.

Round Robin Scheduling

• Round Robin is a preemptive process
scheduling algorithm.

• Each process is provided a fix time to execute;
it is called a quantum.

• Once a process is executed for a given time
period, it is preempted and other process
executes for a given time period.

• Context switching is used to save states of
preempted processes.

Threads

• A thread is called a lightweight process.

• Threads provide a way to improve application
performance through parallelism.

• Each thread belongs to exactly one process and
no thread can exist outside a process.

• Each thread represents a separate flow of
control.

• Threads have been successfully used in
implementing network servers and web server.

Difference between Process and
Thread

Advantages of Thread

• Threads minimize the context switching time.

• Use of threads provides concurrency within a
process.

• Efficient communication.

• It is more economical to create and context
switch threads.

• Threads allow utilization of multiprocessor
architectures to a greater scale and efficiency.

Types of Thread

• Threads are implemented in following two
ways:

• User Level Threads -- User managed threads

• Kernel Level Threads -- Operating System
managed threads acting on kernel, an
operating system core.

Multithreading Models

• Multithreading models are three types:

• Many-to-many relationship

• Many-to-one relationship

• One-to-one relationship

Many-to-Many Model

• The many-to-many model multiplexes any
number of user threads onto an equal or
smaller number of kernel threads.

Many-to-One Model

• Many-to-one model maps many user level
threads to one Kernel-level thread.

• Thread management is done in user space by
the thread library.

One-to-One Model

• There is one-to-one relationship of user-level
thread to the kernel-level thread.

• This model provides more concurrency than
the many-to-one model.

Deadlock

Deadlock

Resource Allocation Graphs

• A useful tool in characterizing the allocation of resources to processes is
the resource allocation graph.

• It is a directed graph that depicts a state of the system of resources &
processes, with each process & each resource represented by a node.

• A graph edge directed from a process to a resource indicates a resource
that has been requested by the process but not yet granted.

• Within a resource node a dot is shown for each instance of that resource.

• A graph edge directed from reusable resource node dot to a process
indicates a request that has been granted.

The Conditions for Deadlock

• 3 conditions of policy must be present for a deadlock to be possible:

• Mutual Exclusion: Only 1 process may use a resource at a time. No
process may access a resource unit that has been allocated to another
process.

• Hold & Wait: A process may hold allocated resources while
awaiting assignment of other resources.

• No preemption: No resource can be forcibly removed from a
process holding it.

• Circular wait: A closed chain of processes exists, such that process
holds at least one resource needed by the next process in the chain.

Deadlock Prevention

• Indirect method of deadlock prevention is to prevent
the occurrence of one of the three necessary
conditions.

• Direct method is to prevent the occurrence of circular
wait

• Mutual Exclusion
• Hold & Wait
• No Preemption
• Circular Wait

Deadlock Avoidance

• Do not start a process if its demands might
lead to deadlock.

• Do not grant an incremental resource request
to a process if this allocation might lead to
deadlock.

Process initiation denial(Bankers
Algo)

• Following relationships hold:
1) Rj = Vj + ∑Aij i= 1 to n for all j
2) Cij <= Rj for all i,j
3) Aij <= Cij for all i,j

Start a new process only if
Rj >= C(n+1)j + ∑ Cij if i=1 to n for all j

That is a process is only started if the maximum claim of
all current processes plus those of the new process
can be met

Bankers Algorithm

Deadlock Detection

Deadlock Recovery

• There are various ways of recovery from
deadlock.

1. Recovery through preemption.

2. Recovery through rollback

3. Recovery through killing process.

Deadlock Recovery

• Following are possible approaches for recovery once deadlock is detected.

– Abort all deadlocked processes.

– Back up each deadlocked process to some previously defined
checkpoint & restart all processes. This requires that rollback & restart
mechanisms be built in to the system.

– Successively abort deadlocked process until deadlock no longer exists.
Detection algorithm needs to be reinvoked.

– Successively preempt resources until deadlock no longer exist. A
process that has a resource preempted from it must be rolled back to
a point prior to its acquisition of that resource.

	Slide 1: Unit 4
	Slide 2: Syllabus
	Slide 3: Software
	Slide 4: What is OS?
	Slide 5
	Slide 6: Examples of OS
	Slide 7: Functions of OS
	Slide 8: Functions of OS
	Slide 9: Memory Management
	Slide 10
	Slide 11: Processor Management
	Slide 12: Device Management
	Slide 13: File Management
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Operating System ─ Services
	Slide 18: Operating System ─ Services
	Slide 19
	Slide 20: Program Execution
	Slide 21: I/O Operation
	Slide 22: File System Manipulation
	Slide 23: Communication
	Slide 24: Error Handling
	Slide 25: Resource Management
	Slide 26: Protection
	Slide 27: System Structure-Layered Approach
	Slide 28: System Structure-Layered Approach
	Slide 29
	Slide 30
	Slide 31: Types Of OS
	Slide 32: Types Of OS(H.W.)
	Slide 33: Syllabus
	Slide 34: Process Management
	Slide 35: Process
	Slide 36
	Slide 37: Process in memory
	Slide 38: Process
	Slide 39: Process State Diagram
	Slide 40
	Slide 41: Process State Diagram
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Process Control Block
	Slide 46
	Slide 47: Diagram of Process Control Block
	Slide 48
	Slide 49
	Slide 50: Process Scheduling Queues
	Slide 51: Process Scheduling Queues
	Slide 52: Process Scheduling Queues
	Slide 53: Process Schedulers
	Slide 54
	Slide 55: Types Of Process Scheduling Algorithms
	Slide 56
	Slide 57: First Come, First Served (FCFS)
	Slide 58: Shortest Job First (SJF)
	Slide 59: Priority scheduling
	Slide 60: Shortest Remaining Time
	Slide 61: Round Robin Scheduling
	Slide 62: Threads
	Slide 63
	Slide 64: Difference between Process and Thread
	Slide 65: Advantages of Thread
	Slide 66: Types of Thread
	Slide 67
	Slide 68: Multithreading Models
	Slide 69: Many-to-Many Model
	Slide 70: Many-to-One Model
	Slide 71: One-to-One Model
	Slide 72: Deadlock
	Slide 73: Deadlock
	Slide 74: Resource Allocation Graphs
	Slide 75
	Slide 76: The Conditions for Deadlock
	Slide 77: Deadlock Prevention
	Slide 78: Deadlock Avoidance
	Slide 79: Process initiation denial(Bankers Algo)
	Slide 80
	Slide 81: Bankers Algorithm
	Slide 82
	Slide 83
	Slide 84: Deadlock Detection
	Slide 85: Deadlock Recovery
	Slide 86: Deadlock Recovery

